Suppr超能文献

一种用于胰腺癌肝转移术前预测的新型列线图的开发与验证

Development and validation of a novel nomogram for pretreatment prediction of liver metastasis in pancreatic cancer.

作者信息

Chen Shangxiang, Chen Shaojie, Lian Guoda, Li Yaqing, Ye Xijiu, Zou Jinmao, Li Ruomeng, Tan Ying, Li Xuanna, Zhang Mengfei, Huang Chunyu, Huang Chengzhi, Zhang Qiubo, Huang Kaihong, Chen Yinting

机构信息

Department of Gastroenterology and the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China.

Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China.

出版信息

Cancer Med. 2020 May;9(9):2971-2980. doi: 10.1002/cam4.2930. Epub 2020 Feb 28.

Abstract

PURPOSE

The diagnostic value of nomogram in pancreatic cancer (PC) with liver metastasis (PCLM) is still largely unknown. We sought to develop and validate a novel nomogram for the prediction of liver metastasis in patients with PC.

METHOD

About 604 pathologically confirmed PC patients from the Sun Yat-sen University Cancer Center (SYSUCC) between July, 2001 and December, 2013 were retrospectively studied. The SYSUCC cohort was randomly assigned to as the training set and internal validation set. Using these two sets, we derived and validated a prognostic model by using concordance index and calibration curves. Another two independent cohorts between August, 2002 and December, 2013 from the Sun Yat-sen Memorial Hospital (SYSMH, n = 335) and Guangdong General Hospital (GDGH, n = 503) was used for external validation.

RESULT

Computed tomography (CT) reported liver metastasis status, carcinoembryonic antigen (CEA) level and differentiation type were identified as risk factors for PCLM in the training set. The final diagnostic model demonstrated good calibration and discrimination with a concordance index of 0.97 and had a robust internal validation. The score ability to diagnose PCLM was further externally validated in SYSMH and GDGH with a concordance index of 0.93. The model showed better calibration and discrimination than CT, CEA and differentiation in each cohort.

CONCLUSION

Based on a large multi-institution database and on the routinely observed CT-reported status, CEA level and tumor differentiation in clinical practice, we developed and validated a novel nomogram to predict PLCM.

摘要

目的

列线图在伴有肝转移的胰腺癌(PCLM)中的诊断价值仍很大程度上未知。我们试图开发并验证一种用于预测PC患者肝转移的新型列线图。

方法

回顾性研究了2001年7月至2013年12月期间来自中山大学肿瘤防治中心(SYSUCC)的约604例经病理确诊的PC患者。将SYSUCC队列随机分为训练集和内部验证集。利用这两个数据集,我们通过一致性指数和校准曲线推导并验证了一个预后模型。另外两个分别来自中山大学孙逸仙纪念医院(SYSMH,n = 335)和广东省人民医院(GDGH,n = 503)的独立队列,时间为2002年8月至2013年12月,用于外部验证。

结果

在训练集中,计算机断层扫描(CT)报告的肝转移状态、癌胚抗原(CEA)水平和分化类型被确定为PCLM的危险因素。最终的诊断模型显示出良好的校准和区分能力,一致性指数为0.97,并且具有强大的内部验证。在SYSMH和GDGH中对诊断PCLM的评分能力进行了进一步的外部验证,一致性指数为0.93。该模型在每个队列中均显示出比CT、CEA和分化更好的校准和区分能力。

结论

基于一个大型多机构数据库以及临床实践中常规观察到的CT报告状态、CEA水平和肿瘤分化情况,我们开发并验证了一种用于预测PLCM的新型列线图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c1/7196044/9e23ae064163/CAM4-9-2971-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验