Suppr超能文献

应用房室和 Patlak 参数化分析评估动态全身 PET 成像中的病灶可探测性。

Assessment of Lesion Detectability in Dynamic Whole-Body PET Imaging Using Compartmental and Patlak Parametric Mapping.

机构信息

From the Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland.

出版信息

Clin Nucl Med. 2020 May;45(5):e221-e231. doi: 10.1097/RLU.0000000000002954.

Abstract

PURPOSE

Hybrid dynamic imaging allows not only the estimation of whole-body (WB) macroparametric maps but also the estimation of microparameters in the initial bed position targeting the blood pool region containing the pathology owing to the limited axial field of view of PET scanners. In this work, we assessed the capability of multipass WB F-FDG PET parametric imaging in terms of lesion detectability through qualitative and quantitative evaluation of simulation and clinical studies.

METHODS

Simulation studies were conducted by generating data incorporating 3 liver and 3 lung lesions produced by 3 noise levels and 20 noise realizations for each noise level to estimate bias and lesion detection features. The total scan time for the clinical studies of 8 patients addressed for lung and liver lesions staging, including dynamic and static WB imaging, lasted 80 minutes. An in-house-developed MATLAB code was utilized to derive the microparametric and macroparametric maps. We compared lesion detectability and different image-derived PET metrics including the SUVs, Patlak-derived influx rate constant (Ki) and distribution volume (V) and K1, k2, k3, blood volume (bv) microparameters, and Ki estimated using the generalized linear least square approach.

RESULTS

In total, 104 lesions were detected, among which 47 were located in the targeted blood pool bed position where all quantitative parameters were calculated, thus enabling comparative analysis across all parameters. The evaluation encompassed visual interpretation performed by an expert nuclear medicine specialist and quantitative analysis. High correlation coefficients were observed between SUVmax and Kimax derived from the generalized linear least square approach, as well as Ki generated by Patlak graphical analysis. Moreover, 3 contrast-enhanced CT-proven malignant lesions located in the liver and a biopsy-proven malignant liver lesion not visible on static SUV images and Patlak maps were clearly pinpointed on K1 and k2 maps.

CONCLUSIONS

Our results demonstrate that full compartmental modeling for the region containing the pathology has the potential of providing complementary information and, in some cases, more accurate diagnosis than conventional static SUV imaging, favorably comparing to Patlak graphical analysis.

摘要

目的

混合动态成像不仅可以估计全身(WB)宏观参数图,还可以在初始床位位置估计微参数,该位置针对包含病理学的血池区域,因为 PET 扫描仪的轴向视野有限。在这项工作中,我们通过对模拟和临床研究的定性和定量评估,评估了多pass WB F-FDG PET 参数成像在检测病变能力方面的能力。

方法

通过生成数据来进行模拟研究,该数据包含由 3 个噪声水平和每个噪声水平的 20 个噪声实现产生的 3 个肝脏和 3 个肺部病变,以估计偏差和病变检测特征。对包括动态和静态 WB 成像的 8 位患有肺和肝病变分期的患者进行临床研究的总扫描时间持续 80 分钟。使用内部开发的 MATLAB 代码来推导微参数和宏观参数图。我们比较了病变检测能力和不同的图像衍生的 PET 指标,包括 SUV、Patlak 衍生的流入率常数(Ki)和分布容积(V)和 K1、k2、k3、血液容积(bv)微参数,以及使用广义线性最小二乘方法估计的 Ki。

结果

总共检测到 104 个病变,其中 47 个位于靶向血池床位位置,在此位置计算了所有定量参数,从而能够在所有参数之间进行比较分析。评估包括由核医学专家进行的视觉解释和定量分析。SUVmax 和由广义线性最小二乘法得出的 Kimax 之间以及通过 Patlak 图形分析生成的 Ki 之间观察到高相关系数。此外,3 个增强 CT 证实的肝脏恶性病变和 1 个在静态 SUV 图像和 Patlak 图上均不可见的活检证实的肝恶性病变位于 K1 和 k2 图上,可以清晰地定位。

结论

我们的结果表明,针对包含病理学的区域进行完整的隔室建模具有提供补充信息的潜力,并且在某些情况下比常规静态 SUV 成像更准确的诊断,与 Patlak 图形分析相比具有优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验