Fukai Yohsuke T, Takeuchi Kazumasa A
Nonequilibrium Physics of Living Matter RIKEN Hakubi Research Team, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
Phys Rev Lett. 2020 Feb 14;124(6):060601. doi: 10.1103/PhysRevLett.124.060601.
We study fluctuations of interfaces in the Kardar-Parisi-Zhang (KPZ) universality class with curved initial conditions. By simulations of a cluster growth model and experiments with liquid-crystal turbulence, we determine the universal scaling functions that describe the height distribution and the spatial correlation of the interfaces growing outward from a ring. The scaling functions, controlled by a single dimensionless time parameter, show crossover from the statistical properties of the flat interfaces to those of the circular interfaces. Moreover, employing the KPZ variational formula to describe the case of the ring initial condition, we find that the formula, which we numerically evaluate, reproduces the numerical and experimental results precisely without adjustable parameters. This demonstrates that precise numerical evaluation of the variational formula is possible at all, and underlines the practical importance of the formula, which is able to predict the one-point distribution of KPZ interfaces for general initial conditions.
我们研究具有弯曲初始条件的 Kardar-Parisi-Zhang(KPZ)普适类中界面的涨落。通过对团簇生长模型的模拟以及液晶湍流实验,我们确定了描述从环向外生长的界面的高度分布和空间相关性的普适标度函数。这些标度函数由单个无量纲时间参数控制,呈现出从平坦界面的统计特性到圆形界面的统计特性的转变。此外,利用 KPZ 变分公式来描述环初始条件的情况,我们发现通过数值计算得到的该公式能够精确再现数值和实验结果,无需可调参数。这表明对变分公式进行精确的数值计算是完全可行的,并突出了该公式的实际重要性,它能够预测一般初始条件下 KPZ 界面的单点分布。