Li Xiangyang, Liu Jingxia, Yang Tong, Qiu Hua, Lu Lei, Tu Qiufen, Xiong Kaiqing, Huang Nan, Yang Zhilu
Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
Physical Education Department, Southwest Jiaotong University, Chengdu, 610031, China.
Biomaterials. 2020 May;241:119904. doi: 10.1016/j.biomaterials.2020.119904. Epub 2020 Feb 19.
Specific selectivity of vascular cells and antithrombogenicity are crucial factors for the long-term success of vascular implants. In this work, a novel concept of mussel-inspired "built-up" surface chemistry realized by sequential stacking of a copper-dopamine network basement, followed by a polydopamine layer is introduced to facilitate the combination of nitric oxide (NO) catalysis and vascular cell selectivity. The resultant "built-up" film allowed easy manipulation of the content of copper ions and the density of catechol/quinone groups, facilitating the multifunctional surface engineering of vascular devices. For example, the chelated copper ions in the copper-dopamine network endow a functionalized vascular stent with a durable release of NO via catalytic decomposition of endogenous S-nitrosothiol. Meanwhile, the catechol/quinone groups on the film surface allow the facile, secondary grafting of the REDV peptide to develop a selectivity for vascular cells, as a supplement to the functions of NO. As a result, the functionalized vascular stent perfectly combines the functions of NO and REDV, showing excellent antithrombotic properties and competitive selectivity toward the endothelial cells over the smooth muscle cells, hence impressively promotes re-endothelialization and improves anti-restenosis in vivo. Therefore, the first mussel-inspired "built-up" surface chemistry can be a promising candidate for the engineering of multifunctional surfaces.
血管细胞的特异性选择性和抗血栓形成性是血管植入物长期成功的关键因素。在这项工作中,引入了一种受贻贝启发的新型“堆积式”表面化学概念,该概念通过依次堆叠铜 - 多巴胺网络基底,然后是聚多巴胺层来实现,以促进一氧化氮(NO)催化与血管细胞选择性的结合。所得的“堆积式”薄膜便于控制铜离子含量和邻苯二酚/醌基团的密度,有利于血管装置的多功能表面工程。例如,铜 - 多巴胺网络中螯合的铜离子通过催化内源性S - 亚硝基硫醇的分解,使功能化血管支架能够持久释放NO。同时,薄膜表面的邻苯二酚/醌基团允许REDV肽的简便二次接枝,以发展对血管细胞的选择性,作为对NO功能的补充。结果,功能化血管支架完美地结合了NO和REDV的功能,表现出优异的抗血栓性能以及对内皮细胞相对于平滑肌细胞的竞争性选择性,从而显著促进体内再内皮化并改善抗再狭窄。因此,首个受贻贝启发的“堆积式”表面化学可能是多功能表面工程的一个有前途的候选方案。