Suppr超能文献

一种混合模型方法,用于有力地检测与癌症风险相关的遗传关联,同时纳入肿瘤特征。

A mixed-model approach for powerful testing of genetic associations with cancer risk incorporating tumor characteristics.

机构信息

Department of Biostatistics, Johns Hopkins Bloomberg SPH, 615 N Wolfe St, Baltimore, MD 21205, USA and Division of Cancer Epidemiology and Genetics, National Cancer Institute, Shady Grove, 9609 Medical Center Drive, Rockville, MD 20850, USA.

Department of Biostatistics, Johns Hopkins Bloomberg SPH, 615 N Wolfe St, Baltimore, MD 21205, USA.

出版信息

Biostatistics. 2021 Oct 13;22(4):772-788. doi: 10.1093/biostatistics/kxz065.

Abstract

Cancers are routinely classified into subtypes according to various features, including histopathological characteristics and molecular markers. Previous genome-wide association studies have reported heterogeneous associations between loci and cancer subtypes. However, it is not evident what is the optimal modeling strategy for handling correlated tumor features, missing data, and increased degrees-of-freedom in the underlying tests of associations. We propose to test for genetic associations using a mixed-effect two-stage polytomous model score test (MTOP). In the first stage, a standard polytomous model is used to specify all possible subtypes defined by the cross-classification of the tumor characteristics. In the second stage, the subtype-specific case-control odds ratios are specified using a more parsimonious model based on the case-control odds ratio for a baseline subtype, and the case-case parameters associated with tumor markers. Further, to reduce the degrees-of-freedom, we specify case-case parameters for additional exploratory markers using a random-effect model. We use the Expectation-Maximization algorithm to account for missing data on tumor markers. Through simulations across a range of realistic scenarios and data from the Polish Breast Cancer Study (PBCS), we show MTOP outperforms alternative methods for identifying heterogeneous associations between risk loci and tumor subtypes. The proposed methods have been implemented in a user-friendly and high-speed R statistical package called TOP (https://github.com/andrewhaoyu/TOP).

摘要

癌症通常根据各种特征(包括组织病理学特征和分子标志物)分为亚型。以前的全基因组关联研究报告了基因座与癌症亚型之间存在异质性关联。然而,对于处理相关肿瘤特征、缺失数据和潜在关联检验中增加的自由度,哪种建模策略是最佳的,这一点并不明显。我们建议使用混合效应两阶段多项模型评分检验(MTOP)来检验遗传关联。在第一阶段,使用标准多项模型来指定由肿瘤特征交叉分类定义的所有可能的亚型。在第二阶段,使用基于基线亚型病例对照优势比和与肿瘤标志物相关的病例病例参数的更简约模型来指定亚型特异性病例对照优势比。此外,为了减少自由度,我们使用随机效应模型为额外的探索性标志物指定病例病例参数。我们使用期望最大化算法来处理肿瘤标志物上的缺失数据。通过在一系列现实场景和波兰乳腺癌研究(PBCS)的数据中进行模拟,我们表明 MTOP 在识别风险基因座与肿瘤亚型之间的异质性关联方面优于替代方法。所提出的方法已在一个名为 TOP(https://github.com/andrewhaoyu/TOP)的用户友好且高速的 R 统计软件包中实现。

相似文献

2
The sequence kernel association test for multicategorical outcomes.
Genet Epidemiol. 2023 Sep;47(6):432-449. doi: 10.1002/gepi.22527. Epub 2023 Apr 19.
3
Prediction of breast cancer survival using clinical and genetic markers by tumor subtypes.
PLoS One. 2015 Apr 13;10(4):e0122413. doi: 10.1371/journal.pone.0122413. eCollection 2015.
4
Genetic susceptibility loci for breast cancer by estrogen receptor status.
Clin Cancer Res. 2008 Dec 15;14(24):8000-9. doi: 10.1158/1078-0432.CCR-08-0975.
5
A likelihood ratio test for genome-wide association under genetic heterogeneity.
Ann Hum Genet. 2013 Mar;77(2):174-82. doi: 10.1111/ahg.12005. Epub 2013 Jan 31.
8
Detecting and exploiting etiologic heterogeneity in epidemiologic studies.
Am J Epidemiol. 2012 Sep 15;176(6):512-8. doi: 10.1093/aje/kws128. Epub 2012 Aug 24.
10
Association Study Confirmed Three Breast Cancer-Specific Molecular Subtype-Associated Susceptibility Loci in Chinese Han Women.
Oncologist. 2017 Aug;22(8):890-894. doi: 10.1634/theoncologist.2016-0423. Epub 2017 Apr 13.

引用本文的文献

2
Cis- and trans-eQTL TWASs of breast and ovarian cancer identify more than 100 susceptibility genes in the BCAC and OCAC consortia.
Am J Hum Genet. 2024 Jun 6;111(6):1084-1099. doi: 10.1016/j.ajhg.2024.04.012. Epub 2024 May 8.
4
Nitrated Polycyclic Aromatic Hydrocarbon (Nitro-PAH) Signatures and Somatic Mutations in Diesel Exhaust-Exposed Bladder Tumors.
Cancer Epidemiol Biomarkers Prev. 2023 Jun 1;32(6):840-847. doi: 10.1158/1055-9965.EPI-22-1208.
5
Common variants in breast cancer risk loci predispose to distinct tumor subtypes.
Breast Cancer Res. 2022 Jan 4;24(1):2. doi: 10.1186/s13058-021-01484-x.
6
TP53 Pathway Function, Estrogen Receptor Status, and Breast Cancer Risk Factors in the Carolina Breast Cancer Study.
Cancer Epidemiol Biomarkers Prev. 2022 Jan;31(1):124-131. doi: 10.1158/1055-9965.EPI-21-0661. Epub 2021 Nov 4.
7
Random effect based tests for multinomial logistic regression in genetic association studies.
Genet Epidemiol. 2021 Oct;45(7):736-740. doi: 10.1002/gepi.22427. Epub 2021 Aug 17.
8
Genetic interactions effects for cancer disease identification using computational models: a review.
Med Biol Eng Comput. 2021 Apr;59(4):733-758. doi: 10.1007/s11517-021-02343-9. Epub 2021 Apr 11.
9
10
Diesel exhaust and bladder cancer risk by pathologic stage and grade subtypes.
Environ Int. 2020 Feb;135:105346. doi: 10.1016/j.envint.2019.105346. Epub 2019 Dec 18.

本文引用的文献

1
Common variants in breast cancer risk loci predispose to distinct tumor subtypes.
Breast Cancer Res. 2022 Jan 4;24(1):2. doi: 10.1186/s13058-021-01484-x.
2
3
Association analysis identifies 65 new breast cancer risk loci.
Nature. 2017 Nov 2;551(7678):92-94. doi: 10.1038/nature24284. Epub 2017 Oct 23.
4
Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer.
Nat Genet. 2017 Dec;49(12):1767-1778. doi: 10.1038/ng.3785. Epub 2017 Oct 23.
5
A comparison of statistical methods for the study of etiologic heterogeneity.
Stat Med. 2017 Nov 10;36(25):4050-4060. doi: 10.1002/sim.7405. Epub 2017 Jul 26.
6
The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog).
Nucleic Acids Res. 2017 Jan 4;45(D1):D896-D901. doi: 10.1093/nar/gkw1133. Epub 2016 Nov 29.
7
Clinical implications of the intrinsic molecular subtypes of breast cancer.
Breast. 2015 Nov;24 Suppl 2:S26-35. doi: 10.1016/j.breast.2015.07.008. Epub 2015 Aug 5.
8
A Meta-Regression Method for Studying Etiological Heterogeneity Across Disease Subtypes Classified by Multiple Biomarkers.
Am J Epidemiol. 2015 Aug 1;182(3):263-70. doi: 10.1093/aje/kwv040. Epub 2015 Jun 26.
9
Established breast cancer risk factors and risk of intrinsic tumor subtypes.
Biochim Biophys Acta. 2015 Aug;1856(1):73-85. doi: 10.1016/j.bbcan.2015.06.002. Epub 2015 Jun 10.
10
Comprehensive molecular profiling of lung adenocarcinoma.
Nature. 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验