Suppr超能文献

固定在可再生生物质基质上的巨大革菌细胞作为潜在的环保型铅污染清除剂。

Phlebia gigantea cells immobilized on renewable biomass matrix as potential ecofriendly scavenger for lead contamination.

机构信息

Department of Chemistry, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040, Eskisehir, Turkey.

Department of Chemistry, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, TR-26040, Eskisehir, Turkey.

出版信息

Environ Sci Pollut Res Int. 2020 May;27(14):16177-16188. doi: 10.1007/s11356-020-07889-z. Epub 2020 Feb 28.

Abstract

A novel biomaterial was prepared by the immobilization of Phlebia gigantea cells in the medium containing lignocellulosic waste and used for the first time in the bioremediation purpose. The developed new biocomposite possesses higher Pb(II) retention potential when compared with the free microbial cells. It could remove Pb(II) up to 74.11% at a biosorbent dosage of 4.0 g L. Surface characterization was carried out through zeta potential, EDX, SEM, and IR studies to understand the metal-biocomposite interactions. The biosorption amount at equilibrium slightly decreased with the increase of the solution temperature. Kinetic data indicated Pb(II) biosorption onto suggested biocomposite fits well with the pseudo-first-order model. Biosorption equilibrium data suited Langmuir model with the highest coefficient of determination values. The immobilized material reached to maximum monolayer Pb(II) retention capacity (1.449 × 10 mol g) within the short equilibrium time (10 min). The designed biocomposite was also adapted to continuous flow mode sorption process. Regeneration tests by dynamic flow mode confirmed reutilization potential of biocomposite.

摘要

一种新型生物材料是通过将 Phlebia gigantea 细胞固定在含有木质纤维素废物的培养基中制备的,这是该材料首次被应用于生物修复目的。与游离微生物细胞相比,开发的新型生物复合材料具有更高的 Pb(II)保留潜力。在生物吸附剂用量为 4.0 g/L 时,它可以去除高达 74.11%的 Pb(II)。通过动电位、EDX、SEM 和 IR 研究进行表面特性分析,以了解金属-生物复合材料的相互作用。平衡时的吸附量随着溶液温度的升高而略有下降。动力学数据表明,Pb(II)在建议的生物复合材料上的吸附符合拟一级模型。吸附平衡数据适合 Langmuir 模型,其决定系数值最高。固定化材料在短的平衡时间(10 分钟)内达到最大单层 Pb(II)保留容量(1.449×10-5 mol g)。设计的生物复合材料也适应于连续流动模式吸附过程。通过动态流动模式的再生测试证实了生物复合材料的再利用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验