Suppr超能文献

Review and construction of interatomic potentials for molecular dynamics studies of hydrogen embrittlement in Fe─C based steels.

作者信息

Zhou Xiaowang, Foster Michael E, Ronevich Joseph A, San Marchi Christopher W

机构信息

Sandia National Laboratories, Livermore, California, USA.

出版信息

J Comput Chem. 2020 May 15;41(13):1299-1309. doi: 10.1002/jcc.26176. Epub 2020 Feb 29.

Abstract

Reducing hydrogen embrittlement in the low-cost Fe─C based steels have the potential to significantly impact the development of hydrogen energy technologies. Molecular dynamics studies of hydrogen interactions with Fe─C steels provide fundamental information about the behavior of hydrogen at microstructural length scales, although such studies have not been performed due to the lack of an Fe─C─H ternary interatomic potential. In this work, the literature on interatomic potentials related to the Fe─C─H systems are reviewed with the aim of constructing an Fe─C─H potential from the published binary potentials. We found that Fe─C, Fe─H, and C─H bond order potentials exist and can be combined to construct an Fe─C─H ternary potential. Therefore, we constructed two such Fe─C─H potentials and demonstrate that these ternary potentials can reasonably capture hydrogen effects on deformation characteristics and deformation mechanisms for a variety of microstructural variations of the Fe─C steels, including martensite that results from γ to α phase transformation, and pearlite that results from the eutectic formation of the Fe C cementite compound.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验