Suppr超能文献

铁中氢脆的原子机制与预测。

Atomic mechanism and prediction of hydrogen embrittlement in iron.

机构信息

Materials Engineering, McGill University, Montreal, Quebec H3A 2B2, Canada.

出版信息

Nat Mater. 2013 Feb;12(2):145-51. doi: 10.1038/nmat3479. Epub 2012 Nov 11.

Abstract

Hydrogen embrittlement in metals has posed a serious obstacle to designing strong and reliable structural materials for many decades, and predictive physical mechanisms still do not exist. Here, a new H embrittlement mechanism operating at the atomic scale in α-iron is demonstrated. Direct molecular dynamics simulations reveal a ductile-to-brittle transition caused by the suppression of dislocation emission at the crack tip due to aggregation of H, which then permits brittle-cleavage failure followed by slow crack growth. The atomistic embrittlement mechanism is then connected to material states and loading conditions through a kinetic model for H delivery to the crack-tip region. Parameter-free predictions of embrittlement thresholds in Fe-based steels over a range of H concentrations, mechanical loading rates and H diffusion rates are found to be in excellent agreement with experiments. This work provides a mechanistic, predictive framework for interpreting experiments, designing structural components and guiding the design of embrittlement-resistant materials.

摘要

几十年来,金属的氢脆问题一直严重阻碍着强韧结构材料的设计,目前仍然缺乏可预测的物理机制。在此,研究人员展示了一种在α-铁中在原子尺度上起作用的新的氢脆机制。直接分子动力学模拟揭示了由于氢的聚集而导致裂纹尖端位错发射受阻,从而引发延性向脆性转变,随后发生脆性解理失效,接着是缓慢的裂纹扩展。然后,通过将氢传递到裂纹尖端区域的动力学模型,将原子级脆化机制与材料状态和加载条件联系起来。通过该模型,对不同氢浓度、力学加载速率和氢扩散速率下的铁基钢的脆化阈值进行了无参数预测,其结果与实验吻合得非常好。这项工作为解释实验、设计结构部件和指导抗脆化材料的设计提供了一个机械的、可预测的框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验