Suppr超能文献

基于自适应评价学习的事件驱动 H 约束控制。

Event-Driven H-Constrained Control Using Adaptive Critic Learning.

出版信息

IEEE Trans Cybern. 2021 Oct;51(10):4860-4872. doi: 10.1109/TCYB.2020.2972748. Epub 2021 Oct 12.

Abstract

This article considers an event-driven H control problem of continuous-time nonlinear systems with asymmetric input constraints. Initially, the H -constrained control problem is converted into a two-person zero-sum game with the discounted nonquadratic cost function. Then, we present the event-driven Hamilton-Jacobi-Isaacs equation (HJIE) associated with the two-person zero-sum game. Meanwhile, we develop a novel event-triggering condition making Zeno behavior excluded. The present event-triggering condition differs from the existing literature in that it can make the triggering threshold non-negative without the requirement of properly selecting the prescribed level of disturbance attenuation. After that, under the framework of adaptive critic learning, we use a single critic network to solve the event-driven HJIE and tune its weight parameters by using historical and instantaneous state data simultaneously. Based on the Lyapunov approach, we demonstrate that the uniform ultimate boundedness of all the signals in the closed-loop system is guaranteed. Finally, simulations of a nonlinear plant are presented to validate the developed event-driven H control strategy.

摘要

本文考虑了具有非对称输入约束的连续时间非线性系统的事件驱动 H 控制问题。首先,将 H 约束控制问题转换为具有折扣非二次代价函数的二人零和博弈。然后,给出了与二人零和博弈相关的事件驱动 Hamilton-Jacobi-Isaacs 方程(HJIE)。同时,提出了一种新的事件触发条件,排除了零行为。与现有文献相比,本触发条件的不同之处在于,它可以使触发阈值非负,而无需正确选择规定的干扰衰减水平。之后,在自适应评价学习的框架下,我们使用单个评价网络来求解事件驱动的 HJIE,并同时利用历史和瞬时状态数据来调整其权值参数。基于 Lyapunov 方法,证明了闭环系统中所有信号的一致有界性。最后,通过一个非线性被控对象的仿真,验证了所提出的事件驱动 H 控制策略。

相似文献

1
Event-Driven H-Constrained Control Using Adaptive Critic Learning.基于自适应评价学习的事件驱动 H 约束控制。
IEEE Trans Cybern. 2021 Oct;51(10):4860-4872. doi: 10.1109/TCYB.2020.2972748. Epub 2021 Oct 12.
2
Event-driven H control with critic learning for nonlinear systems.事件驱动的 H 控制与非线性系统的批评学习。
Neural Netw. 2020 Dec;132:30-42. doi: 10.1016/j.neunet.2020.08.004. Epub 2020 Aug 20.
4
Decentralized Event-Driven Constrained Control Using Adaptive Critic Designs.基于自适应评判设计的分布式事件驱动约束控制
IEEE Trans Neural Netw Learn Syst. 2022 Oct;33(10):5830-5844. doi: 10.1109/TNNLS.2021.3071548. Epub 2022 Oct 5.
8
Reinforcement Learning for Robust Dynamic Event-Driven Constrained Control.用于鲁棒动态事件驱动约束控制的强化学习
IEEE Trans Neural Netw Learn Syst. 2025 Apr;36(4):6067-6079. doi: 10.1109/TNNLS.2024.3394251. Epub 2025 Apr 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验