School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
Harmful Algae. 2020 Feb;92:101741. doi: 10.1016/j.hal.2020.101741. Epub 2020 Jan 27.
Application of KMnO for preventing the formation of cyanobacterial bloom at early growth stage has not been reported. Antibiotics generate hormesis effects in cyanobacteria at currently reported concentrations, which may negatively affect the control of cyanobacterial bloom. This study assessed the treatment performance of KMnO in Microcystis aeruginosa with and without the existence of the antibiotic mixture composed of four simultaneously detected antibiotics in aquatic environments (sulfamethoxazole, ciprofloxacin, amoxicillin and tetracycline). KMnO downregulated two chlorophyll a synthetases (chlG and chlM), 14 photosynthesis-related proteins and two microcystin synthetases (mcyB and mcyD) in M. aeruginosa, and reduced chlorophyll a content, photosynthetic activity and microcystin concentration in a dose-dependent manner. Inhibition of photosynthesis and biosynthesis resulted in extended lag phase and decreased growth rate in KMnO-treated Microcystis aeruginosa. In contrast, mixed antibiotics upregulated 6 oxidation-reduction proteins, a cell division regulatory protein (MAE_37210), 14 photosynthesis-related proteins, 14 biosynthesis-related proteins (including microcystin synthetases mcyA and mcyB) and a microcystin transport protein (mcyH), which consequently reduced oxidative stress, shortened lag phase as well as significantly stimulated (p < 0.05) cyanobacterial growth, photosynthetic activity, microcystin synthesis and microcystin release in KMnO-treated M. aeruginosa. An optimal dose of 3 mg L was suggested for KMnO treatment. Mixed antibiotics should be controlled below a no-impact threshold of 20 ng L (5 ng L for each antibiotic) for eliminating their adverse effects during KMnO treatment of cyanobacteria in antibiotics polluted environments.
高锰酸钾在蓝藻早期生长阶段防止蓝藻水华形成的应用尚未见报道。在目前报道的浓度下,抗生素对蓝藻产生应激效应,这可能会对蓝藻水华的控制产生负面影响。本研究评估了高锰酸钾在含有同时检测到的四种抗生素(磺胺甲恶唑、环丙沙星、阿莫西林和四环素)的抗生素混合物存在或不存在的条件下对铜绿微囊藻的处理性能。高锰酸钾下调了铜绿微囊藻中的两个叶绿素 a 合酶(chlG 和 chlM)、14 种光合作用相关蛋白和两种微囊藻毒素合酶(mcyB 和 mcyD),并以剂量依赖的方式降低了叶绿素 a 含量、光合作用活性和微囊藻毒素浓度。光合作用和生物合成的抑制导致高锰酸钾处理的铜绿微囊藻延长了迟滞期并降低了生长速率。相比之下,混合抗生素上调了 6 种氧化还原蛋白、一个细胞分裂调节蛋白(MAE_37210)、14 种光合作用相关蛋白、14 种生物合成相关蛋白(包括微囊藻毒素合酶 mcyA 和 mcyB)和一种微囊藻毒素转运蛋白(mcyH),从而降低了氧化应激,缩短了迟滞期,并显著刺激(p<0.05)高锰酸钾处理的铜绿微囊藻的生长、光合作用活性、微囊藻毒素合成和微囊藻毒素释放。建议高锰酸钾处理的最佳剂量为 3mg/L。在抗生素污染环境中,为消除高锰酸钾处理蓝藻过程中抗生素的不利影响,混合抗生素的浓度应控制在 20ng/L(每种抗生素 5ng/L)以下的无影响阈值以下。