Suppr超能文献

无需组织切片的人类结肠肠神经系统的稳健、三维可视化。

Robust, 3-Dimensional Visualization of Human Colon Enteric Nervous System Without Tissue Sectioning.

机构信息

Children's Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania; Cincinnati Children's Hospital Medical Center and the Department of Pediatrics at University of Cincinnati College of Medicine, Cincinnati, Ohio.

Children's Hospital of Philadelphia Research Institute, Abramson Research Center, Philadelphia, Pennsylvania.

出版信息

Gastroenterology. 2020 Jun;158(8):2221-2235.e5. doi: 10.1053/j.gastro.2020.02.035. Epub 2020 Feb 27.

Abstract

BACKGROUND & AIMS: Small, 2-dimensional sections routinely used for human pathology analysis provide limited information about bowel innervation. We developed a technique to image human enteric nervous system (ENS) and other intramural cells in 3 dimensions.

METHODS

Using mouse and human colon tissues, we developed a method that combines tissue clearing, immunohistochemistry, confocal microscopy, and quantitative analysis of full-thickness bowel without sectioning to quantify ENS and other intramural cells in 3 dimensions.

RESULTS

We provided 280 adult human colon confocal Z-stacks from persons without known bowel motility disorders. Most of our images were of myenteric ganglia, captured using a 20× objective lens. Full-thickness colon images, viewed with a 10× objective lens, were as large as 4 × 5 mm. Colon from 2 pediatric patients with Hirschsprung disease was used to show distal colon without enteric ganglia, as well as a transition zone and proximal pull-through resection margin where ENS was present. After testing a panel of antibodies with our method, we identified 16 antibodies that bind to molecules in neurons, glia, interstitial cells of Cajal, and muscularis macrophages. Quantitative analyses demonstrated myenteric plexus in 24.5% ± 2.4% of flattened colon Z-stack area. Myenteric ganglia occupied 34% ± 4% of myenteric plexus. Single myenteric ganglion volume averaged 3,527,678 ± 573,832 mm with 38,706 ± 5763 neuron/mm and 129,321 ± 25,356 glia/mm. Images of large areas provided insight into why published values of ENS density vary up to 150-fold-ENS density varies greatly, across millimeters, so analyses of small numbers of thin sections from the same bowel region can produce varying results. Neuron subtype analysis revealed that approximately 56% of myenteric neurons stained with neuronal nitric oxide synthase antibody and approximately 33% of neurons produce and store acetylcholine. Transition zone regions from colon tissues of patients with Hirschsprung disease had ganglia in multiple layers and thick nerve fiber bundles without neurons. Submucosal neuron distribution varied among imaged colon regions.

CONCLUSIONS

We developed a 3-dimensional imaging method for colon that provides more information about ENS structure than tissue sectioning. This approach could improve diagnosis for human bowel motility disorders and may be useful for other bowel diseases as well.

摘要

背景与目的

用于人体病理学分析的小二维切片仅能提供有限的肠道神经支配信息。我们开发了一种可在三维空间成像人类肠神经系统(ENS)和其他壁内细胞的技术。

方法

使用鼠和人结肠组织,我们开发了一种方法,该方法结合组织透明化、免疫组织化学、共聚焦显微镜和全厚度肠道的定量分析,无需切片即可定量分析三维空间中的 ENS 和其他壁内细胞。

结果

我们提供了 280 例来自无已知肠道运动障碍的成人结肠共聚焦 Z 堆栈。我们的大多数图像是使用 20×物镜捕获的肌间神经节。使用 10×物镜观察的全厚度结肠图像大小可达 4×5mm。来自 2 例先天性巨结肠病患儿的结肠用于显示无肠神经节的远端结肠,以及存在 ENS 的过渡区和近端经肛门拖出切除术切缘。用我们的方法测试了一组抗体后,我们鉴定出 16 种与神经元、神经胶质、Cajal 间质细胞和肌间巨噬细胞中的分子结合的抗体。定量分析表明,在扁平化结肠 Z 堆栈区域的 24.5%±2.4%中存在肌间神经丛。肌间神经节占肌间神经丛的 34%±4%。单个肌间神经节的平均体积为 3527678±573832mm,神经元密度为 38706±5763/mm,神经胶质密度为 129321±25356/mm。大面积图像提供了为什么发表的 ENS 密度值差异高达 150 倍的原因——ENS 密度在毫米范围内差异很大,因此对同一肠道区域的少量薄切片进行分析可能会产生不同的结果。神经元亚型分析表明,约 56%的肌间神经元用神经元一氧化氮合酶抗体染色,约 33%的神经元产生并储存乙酰胆碱。先天性巨结肠病患者结肠组织的过渡区有多层神经节和无神经元的厚神经纤维束。黏膜下神经元的分布在不同的成像结肠区域之间有所不同。

结论

我们开发了一种用于结肠的三维成像方法,该方法提供的 ENS 结构信息比组织切片更多。这种方法可以改善人类肠道运动障碍的诊断,也可能对其他肠道疾病有用。

相似文献

1
Robust, 3-Dimensional Visualization of Human Colon Enteric Nervous System Without Tissue Sectioning.
Gastroenterology. 2020 Jun;158(8):2221-2235.e5. doi: 10.1053/j.gastro.2020.02.035. Epub 2020 Feb 27.
2
Three-Dimensional Imaging of the Enteric Nervous System in Human Pediatric Colon Reveals New Features of Hirschsprung's Disease.
Gastroenterology. 2024 Aug;167(3):547-559. doi: 10.1053/j.gastro.2024.02.045. Epub 2024 Mar 16.
4
Full-field optical coherence microscopy is a novel technique for imaging enteric ganglia in the gastrointestinal tract.
Neurogastroenterol Motil. 2012 Dec;24(12):e611-21. doi: 10.1111/nmo.12035. Epub 2012 Oct 28.
7
Multiphoton microscopy to identify and characterize the transition zone in a mouse model of Hirschsprung disease.
J Pediatr Surg. 2013 Jun;48(6):1288-93. doi: 10.1016/j.jpedsurg.2013.03.025.
8
Immunohistochemical localisation of cholinergic muscarinic receptor subtype 1 (M1r) in the guinea pig and human enteric nervous system.
J Chem Neuroanat. 2007 Jul;33(4):193-201. doi: 10.1016/j.jchemneu.2007.03.001. Epub 2007 Mar 23.
10
A correlative morphometric and clinical investigation of hypoganglionosis of the colon in children.
Eur J Pediatr Surg. 1999 Apr;9(2):67-74. doi: 10.1055/s-2008-1072216.

引用本文的文献

1
AI-powered 3D pathology protocol enhances enteric nervous system visualization and quantification for clinical diagnostics.
Theranostics. 2025 Jun 20;15(15):7440-7453. doi: 10.7150/thno.112024. eCollection 2025.
2
Flow Cytometric Analysis and Sorting of Murine Enteric Nervous System Cells: An Optimized Protocol.
Int J Mol Sci. 2025 May 18;26(10):4824. doi: 10.3390/ijms26104824.
3
The Neuroimmune Axis in Gastrointestinal Disorders - An Underrecognized Problem.
Curr Gastroenterol Rep. 2025 Apr 15;27(1):28. doi: 10.1007/s11894-025-00973-9.
4
Current and future state of the management of Hirschsprung disease.
World J Pediatr Surg. 2025 Mar 31;8(1):e000860. doi: 10.1136/wjps-2024-000860. eCollection 2025.
5
Imaging the enteric nervous system.
Front Neuroanat. 2025 Mar 12;19:1532900. doi: 10.3389/fnana.2025.1532900. eCollection 2025.
10
Gut Analysis Toolbox - automating quantitative analysis of enteric neurons.
J Cell Sci. 2024 Oct 15;137(20). doi: 10.1242/jcs.261950. Epub 2024 Oct 30.

本文引用的文献

2
Unexpected Roles for the Second Brain: Enteric Nervous System as Master Regulator of Bowel Function.
Annu Rev Physiol. 2019 Feb 10;81:235-259. doi: 10.1146/annurev-physiol-021317-121515. Epub 2018 Oct 31.
3
Intestinal Dysmotility Syndromes following Systemic Infection by Flaviviruses.
Cell. 2018 Nov 15;175(5):1198-1212.e12. doi: 10.1016/j.cell.2018.08.069. Epub 2018 Oct 4.
4
Molecular Architecture of the Mouse Nervous System.
Cell. 2018 Aug 9;174(4):999-1014.e22. doi: 10.1016/j.cell.2018.06.021.
5
Palmitate lipotoxicity in enteric glial cells: Lipid remodeling and mitochondrial ROS are responsible for cyt c release outside mitochondria.
Biochim Biophys Acta Mol Cell Biol Lipids. 2018 Aug;1863(8):895-908. doi: 10.1016/j.bbalip.2018.04.021. Epub 2018 May 2.
6
Expert consensus document: Advances in the diagnosis and classification of gastric and intestinal motility disorders.
Nat Rev Gastroenterol Hepatol. 2018 May;15(5):291-308. doi: 10.1038/nrgastro.2018.7. Epub 2018 Apr 6.
7
Enteric nervous system manifestations of neurodegenerative disease.
Brain Res. 2018 Aug 15;1693(Pt B):207-213. doi: 10.1016/j.brainres.2018.01.011. Epub 2018 Jan 31.
8
Hirschsprung disease - integrating basic science and clinical medicine to improve outcomes.
Nat Rev Gastroenterol Hepatol. 2018 Mar;15(3):152-167. doi: 10.1038/nrgastro.2017.149. Epub 2018 Jan 4.
10
Tridimensional Visualization and Analysis of Early Human Development.
Cell. 2017 Mar 23;169(1):161-173.e12. doi: 10.1016/j.cell.2017.03.008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验