Kosar Naveen, Shehzadi Kiran, Ayub Khurshid, Mahmood Tariq
Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
J Mol Graph Model. 2020 Jun;97:107573. doi: 10.1016/j.jmgm.2020.107573. Epub 2020 Feb 21.
Based on DFT calculations, we have explored the changes in geometric, electronic and nonlinear optical (NLO) properties of MO and MS (M = Li, Na and K) doped graphdiyne. The doping of superalkalis not only changes the electronic properties of GDY but also remarkably alters the NLO properties. Stabilities of doped GDY are evaluated through interaction energies. HOMO-LUMO gap, NBO, polarizability and first hyperpolarizability (β) calculations at hybrid (B3LYP) and long-range corrected methods (CAM-B3LYP, LC-BLYP and ωB97XD) are performed for studying the NLO properties of doped GDY complexes. Significantly high values of β are observed for all doped structures, especially for NaS@GDY (1.36×10 au). Reduction in HOMO-LUMO gap concomitant with increase of β value is attributed to the strong interaction of NaS with GDY. The partial density of states (PDOS) spectra strongly support the existence of excess electrons. To rationalize the trends in first hyperpolarizability of doped GDY, two level model calculations are also performed. This study of super alkalis doped GDY will be advantageous for promoting the potential applications of the nanostructures in designing new types of electronic nanodevices and production of high performance nonlinear optical materials.
基于密度泛函理论(DFT)计算,我们研究了MO和MS(M = Li、Na和K)掺杂的石墨炔在几何、电子和非线性光学(NLO)性质方面的变化。超碱金属的掺杂不仅改变了石墨炔的电子性质,还显著改变了其NLO性质。通过相互作用能评估掺杂石墨炔的稳定性。采用杂化(B3LYP)和长程校正方法(CAM - B3LYP、LC - BLYP和ωB97XD)进行最高已占分子轨道 - 最低未占分子轨道(HOMO - LUMO)能隙、自然键轨道(NBO)、极化率和第一超极化率(β)计算,以研究掺杂石墨炔配合物的NLO性质。所有掺杂结构都观察到了显著高的β值,特别是对于NaS@GDY(1.36×10 au)。HOMO - LUMO能隙的减小与β值的增加相伴,这归因于NaS与石墨炔的强相互作用。态密度(PDOS)光谱有力地支持了过量电子的存在。为了合理化掺杂石墨炔第一超极化率的趋势,还进行了双能级模型计算。这项关于超碱金属掺杂石墨炔的研究将有利于推动纳米结构在设计新型电子纳米器件和生产高性能非线性光学材料方面的潜在应用。