Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
J Mol Graph Model. 2021 Sep;107:107973. doi: 10.1016/j.jmgm.2021.107973. Epub 2021 Jun 26.
In this study, the nonlinear optical (NLO) properties of pristine phosphorene and superalkali (LiO) doped phosphorene are estimated through the density functional theory (DFT) method to investigate the optical properties. The geometries of complexes have been optimized using the B3LYP/6-31G (d, p) level of theory. The effects of doping on phosphorene have been thoroughly explained by vertical ionization energy (VIE), interaction energies (E), and natural bond orbitals (NBO), Moreover, the density of states (DOS), electron density difference map (EDDM) analysis, the frontier molecular orbitals (FMO) plots are also given out to find more physical divination into the electronic communication and structure property relationship. The doping of superalkali conclusively has reduced the HOMO-LUMO energy gap of M1 3.28 eV-1.25 eV for M2 making it the n-type semiconductor. The higher values of EE and VIE obtained for M2 has indicated that this complex has higher stability and stronger interaction between superalkalis and phosphorene. More interestingly, there has been a gradual increase in the first static hyperpolarizability (β) values for M1, M2 and M3 are 115.75 au, 4118.6 au, and 659.30 au respectively. The Static second hyperpolarizability (γ) of the doped complexes has also been calculated from which the M2 has the highest value of 1382.5 ҳ 10 au. The TD-DFT exploration has exhibited that the doped molecules are adequately transparent in the UV region. Some selected systems are also compared with the p-NA reference molecule which is a familiar external reference molecule for NLO applications. From UV absorption analysis, it can be found that these doped complexes of phosphorene may be contemplated as a new applicant for intense ultraviolet NLO materials. Computational studies have revealed the stability of M2 and M3 making them feasible as NLO materials in optoelectronic applications.
在这项研究中,通过密度泛函理论(DFT)方法估计了原始磷烯和超碱(LiO)掺杂磷烯的非线性光学(NLO)性质,以研究光学性质。使用 B3LYP/6-31G(d,p)理论水平优化了复合物的几何形状。通过垂直电离能(VIE)、相互作用能(E)和自然键轨道(NBO),详细解释了掺杂对磷烯的影响。此外,还给出了态密度(DOS)、电子密度差图(EDDM)分析、前沿分子轨道(FMO)图,以更深入地了解电子通信和结构性质关系。超碱的掺杂显著降低了 M1 的 HOMO-LUMO 能隙,从 3.28 eV-1.25 eV,使磷烯成为 n 型半导体。M2 获得的 EE 和 VIE 值较高,表明该配合物具有较高的稳定性和超碱与磷烯之间更强的相互作用。更有趣的是,M1、M2 和 M3 的一阶静态极化率(β)值逐渐增加,分别为 115.75 au、4118.6 au 和 659.30 au。掺杂配合物的静态二阶极化率(γ)也已计算得出,其中 M2 的值最高,为 1382.5 ҳ 10 au。TD-DFT 研究表明,掺杂分子在 UV 区域具有足够的透明度。还比较了一些选定的系统与 p-NA 参考分子,p-NA 参考分子是 NLO 应用的常见外部参考分子。从紫外吸收分析中可以发现,这些磷烯的掺杂配合物可能被认为是强烈的紫外 NLO 材料的新候选者。计算研究表明,M2 和 M3 的稳定性使其成为光电应用中 NLO 材料的可行选择。