Suppr超能文献

机器学习在设计具有受控释放性能的眼镜方面的应用——为医疗保健应用而设计。

Machine learning as a tool to design glasses with controlled dissolution for healthcare applications.

机构信息

Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA.

Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.

出版信息

Acta Biomater. 2020 Apr 15;107:286-298. doi: 10.1016/j.actbio.2020.02.037. Epub 2020 Feb 28.

Abstract

The advancement of glass science has played a pivotal role in enhancing the quality and length of human life. However, with an ever-increasing demand for glasses in a variety of healthcare applications - especially with controlled degradation rates - it is becoming difficult to design new glass compositions using conventional approaches. For example, it is difficult, if not impossible, to design new gene-activation bioactive glasses, with controlled release of functional ions tailored for specific patient states, using trial-and-error based approaches. Notwithstanding, it is possible to design new glasses with controlled release of functional ions by using artificial intelligence-based methods, for example, supervised machine learning (ML). In this paper, we present an ensemble ML model for reliable prediction of time- and composition-dependent dissolution behavior of a wide variety of oxide glasses relevant for various biomedical applications. A comprehensive database, comprising of over 1300 data-records consolidated from original glass dissolution experiments, has been used for training and subsequent testing of prediction performance of the ML model. Results demonstrate that the ensemble ML model can predict chemical degradation behavior of glasses in aqueous solutions over a wide range of pH relevant for their usage in a human body where the environment can be highly acidic (for example, pH = 3), for example, due to secretion of citric acid by osteoclasts, or highly alkaline (pH ≈10) due to the release of alkali cations from bioactive glasses. Outcomes of this study can be leveraged to design glasses with controlled dissolution behavior in various biological environments. STATEMENT OF SIGNIFICANCE: In this paper, we present an ensemble machine learning (ML) model for prediction of dissolution behavior of a wide variety of oxide glasses relevant for various biomedical applications. The results demonstrate that the ML model can predict the chemical degradation behavior of glasses in aqueous solutions over a wide range of pH relevant for their usage in a human body where the environment can be highly acidic (for example, pH = 3), for example, due to secretion of citric acid by osteoclasts, or highly alkaline (pH ≈10) due to the release of alkali cations from bioactive glasses. Outcomes of this study can be leveraged to design new biomedical glasses with controlled (desired) dissolution behavior in various biological environments.

摘要

玻璃科学的进步在提高人类生活质量和延长人类寿命方面发挥了关键作用。然而,随着各种医疗保健应用对眼镜的需求不断增加——特别是对控制降解率的需求不断增加——使用传统方法设计新的玻璃成分变得越来越困难。例如,使用基于反复试验的方法,几乎不可能(如果不是不可能的话)设计具有受控基因激活生物活性的新型玻璃,以针对特定患者状态定制功能离子的受控释放。尽管如此,使用基于人工智能的方法,例如有监督机器学习(ML),有可能设计具有受控功能离子释放的新型玻璃。在本文中,我们提出了一种用于可靠预测各种与生物医学应用相关的氧化物玻璃的时间和组成依赖性溶解行为的集成 ML 模型。一个综合数据库,由 1300 多个从原始玻璃溶解实验中整合的数据记录组成,用于训练和随后测试 ML 模型的预测性能。结果表明,集成 ML 模型可以预测在与人体使用相关的广泛 pH 值范围内(例如,由于破骨细胞分泌柠檬酸,pH = 3,或者由于生物活性玻璃释放碱金属阳离子,pH ≈ 10)玻璃在水溶液中的化学降解行为。本研究的结果可用于设计在各种生物环境中具有受控溶解行为的玻璃。

意义声明

在本文中,我们提出了一种用于预测各种与生物医学应用相关的氧化物玻璃的溶解行为的集成机器学习(ML)模型。结果表明,ML 模型可以预测玻璃在与人体使用相关的广泛 pH 值范围内的水溶液中的化学降解行为,其中环境可能呈高度酸性(例如,由于破骨细胞分泌柠檬酸,pH = 3),或者呈高度碱性(pH ≈ 10)由于生物活性玻璃释放碱金属阳离子。本研究的结果可用于设计具有受控(所需)溶解行为的新型生物医学玻璃,以适应各种生物环境。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验