Suppr超能文献

一种基于学习自动机的新型随机森林算法。

A New Random Forest Algorithm Based on Learning Automata.

作者信息

Savargiv Mohammad, Masoumi Behrooz, Keyvanpour Mohammad Reza

机构信息

Faculty of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran.

Department of Computer Engineering, Alzahra University, Tehran, Iran.

出版信息

Comput Intell Neurosci. 2021 Mar 27;2021:5572781. doi: 10.1155/2021/5572781. eCollection 2021.

Abstract

The goal of aggregating the base classifiers is to achieve an aggregated classifier that has a higher resolution than individual classifiers. Random forest is one of the types of ensemble learning methods that have been considered more than other ensemble learning methods due to its simple structure, ease of understanding, as well as higher efficiency than similar methods. The ability and efficiency of classical methods are always influenced by the data. The capabilities of independence from the data domain, and the ability to adapt to problem space conditions, are the most challenging issues about the different types of classifiers. In this paper, a method based on learning automata is presented, through which the adaptive capabilities of the problem space, as well as the independence of the data domain, are added to the random forest to increase its efficiency. Using the idea of reinforcement learning in the random forest has made it possible to address issues with data that have a dynamic behaviour. Dynamic behaviour refers to the variability in the behaviour of a data sample in different domains. Therefore, to evaluate the proposed method, and to create an environment with dynamic behaviour, different domains of data have been considered. In the proposed method, the idea is added to the random forest using learning automata. The reason for this choice is the simple structure of the learning automata and the compatibility of the learning automata with the problem space. The evaluation results confirm the improvement of random forest efficiency.

摘要

聚合基分类器的目标是获得一个比单个分类器具有更高分辨率的聚合分类器。随机森林是集成学习方法的一种类型,由于其结构简单、易于理解以及比类似方法具有更高的效率,它比其他集成学习方法受到了更多的关注。经典方法的能力和效率总是受到数据的影响。独立于数据域的能力以及适应问题空间条件的能力,是不同类型分类器面临的最具挑战性的问题。本文提出了一种基于学习自动机的方法,通过该方法将问题空间的自适应能力以及数据域的独立性添加到随机森林中,以提高其效率。在随机森林中使用强化学习的思想使得处理具有动态行为的数据问题成为可能。动态行为是指数据样本在不同域中的行为变化。因此,为了评估所提出的方法,并创建一个具有动态行为的环境,考虑了不同的数据域。在所提出的方法中,使用学习自动机将该思想添加到随机森林中。做出这种选择的原因是学习自动机的结构简单以及学习自动机与问题空间的兼容性。评估结果证实了随机森林效率的提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b657/8019375/93531c727b0a/CIN2021-5572781.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验