Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; Department of Materials Synthesis, Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
J Chromatogr A. 2020 Jun 7;1620:460981. doi: 10.1016/j.chroma.2020.460981. Epub 2020 Feb 19.
A new commercially available HPLC column, poly-N-(1H-tetrazole-5-yl)-methacrylamide-bonded stationary phase (Daicel DCpak PTZ), was systematically evaluated for its carbohydrate isomer separation capability by hydrophilic interaction liquid chromatography (HILIC) with charged aerosol detection (CAD) or (tandem) mass spectrometry. Reducing sugars tend to split into two anomer peaks which makes carbohydrate isomer separations in non-derivatized form even more complicated. For practical purposes anomer separations are therefore ideally suppressed which can be accomplished by using high temperature or high pH that are both associated with fast interconversion kinetics leading to peak coalescence, or on the other hand by conditions with low chromatographic anomer selectivity. Four major hexoses (glucose, mannose, galactose, fructose), five main pentoses (ribose, ribulose, xylose, xylulose, arabinose) and five most important disaccharides (maltose, cellobiose, lactose, sucrose, trehalose) were analyzed as single carbohydrate standards by isocratic HILIC with 0.1% (v/v) formic acid and 2 mM ammonium acetate at various temperatures to study anomer interconversion equilibria in a pH-dependent manner. Rate constants of forward (α→β) and backward (β→α) anomerization and corresponding energy barriers were calculated. The energy barriers of anomerisation were in the range of around 83-91 kJ mol at 298 K and the difference between forward (α→β) and backward reaction (β→α) was typically between 1-3 kJ mol. The systematic studies finally allowed to pick conditions for the simultaneous analysis of all 14 carbohydrates by HILIC-ESI-MS(/MS) with PTZ in gradient elution mode. A combination of carbohydrate isomer-selective LC (with PTZ), tandem MS (with carbohydrate group-selective MS1 and some species-specific SRM transitions) and a simple deconvolution strategy allowed the determination of all carbohydrates of the complex test mixture except for the disaccharide pair lactose and maltose (which can be determined as sum). Consequently, the proposed method represents a successful step towards a global glycometabolomics profiling method of mono- and disaccharides by HILIC-ESI-MS/MS.
一种新的商业可用的 HPLC 柱,聚-N-(1H-四唑-5-基)-甲基丙烯酰胺键合固定相(Daicel DCpak PTZ),通过亲水作用色谱(HILIC)与带电气溶胶检测(CAD)或(串联)质谱对其碳水化合物异构体分离能力进行了系统评价。还原糖往往会分裂成两个异头峰,这使得非衍生形式的碳水化合物异构体分离更加复杂。因此,为了实际目的,理想情况下应抑制异头峰分离,这可以通过使用高温或高 pH 值来实现,这两种方法都与快速的互变异构动力学有关,导致峰合并,或者另一方面,通过具有低色谱异头选择性的条件来实现。四种主要的己糖(葡萄糖、甘露糖、半乳糖、果糖)、五种主要的戊糖(核糖、核酮糖、木糖、木酮糖、阿拉伯糖)和五种最重要的二糖(麦芽糖、纤维二糖、乳糖、蔗糖、海藻糖)作为单碳水化合物标准品,通过等度 HILIC 用 0.1%(v/v)甲酸和 2 mM 乙酸铵在不同温度下进行分析,以研究 pH 依赖性的异头互变平衡。计算了前向(α→β)和后向(β→α)异头化的速率常数和相应的能垒。异头化的能垒在 298 K 时约为 83-91 kJ mol,前向(α→β)和后向反应(β→α)之间的差异通常在 1-3 kJ mol 之间。系统研究最终允许选择在梯度洗脱模式下使用 PTZ 通过 HILIC-ESI-MS(/MS)同时分析所有 14 种碳水化合物的条件。碳水化合物异构体选择性 LC(使用 PTZ)、串联 MS(使用碳水化合物基团选择性 MS1 和一些特定物种的 SRM 跃迁)和简单的解卷积策略的组合允许确定复杂测试混合物中除二糖对乳糖和麦芽糖(可以作为总和确定)之外的所有碳水化合物。因此,该方法代表了通过 HILIC-ESI-MS/MS 对单糖和二糖进行全面糖代谢组学分析的成功一步。