Department of Physics and Astronomy, University of California, Riverside, California 92521, United States.
Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France.
ACS Nano. 2020 Mar 24;14(3):3170-3180. doi: 10.1021/acsnano.9b08354. Epub 2020 Mar 2.
Previous self-assembly experiments on a model icosahedral plant virus have shown that, under physiological conditions, capsid proteins initially bind to the genome through an en masse mechanism and form nucleoprotein complexes in a disordered state, which raises the question as to how virions are assembled into a highly ordered structure in the host cell. Using small-angle X-ray scattering, we find out that a disorder-order transition occurs under physiological conditions upon an increase in capsid protein concentrations. Our cryo-transmission electron microscopy reveals closed spherical shells containing transcribed viral RNA even at pH 7.5, in marked contrast with the previous observations. We use Monte Carlo simulations to explain this disorder-order transition and find that, as the shell grows, the structures of disordered intermediates in which the distribution of pentamers does not belong to the icosahedral subgroups become energetically so unfavorable that the caps can easily dissociate and reassemble, overcoming the energy barriers for the formation of perfect icosahedral shells. In addition, we monitor the growth of capsids under the condition that the nucleation and growth is the dominant pathway and show that the key for the disorder-order transition in both en masse and nucleation and growth pathways lies in the strength of elastic energy compared to the other forces in the system including protein-protein interactions and the chemical potential of free subunits. Our findings explain, at least in part, why perfect virions with icosahedral order form under different conditions including physiological ones.
先前对一种模式二十面体植物病毒的自组装实验表明,在生理条件下,衣壳蛋白最初通过集体机制与基因组结合,并在无序状态下形成核蛋白复合物,这就提出了一个问题,即病毒粒子如何在宿主细胞中组装成高度有序的结构。我们通过小角度 X 射线散射发现,在生理条件下,随着衣壳蛋白浓度的增加,会发生无序-有序转变。我们的冷冻传输电子显微镜揭示了即使在 pH 值为 7.5 的情况下,也会形成包含转录病毒 RNA 的封闭球形壳,这与之前的观察结果形成鲜明对比。我们使用蒙特卡罗模拟来解释这种无序-有序转变,并发现随着壳的生长,无序中间体的结构发生变化,其中五聚体的分布不属于二十面体亚群,这种结构在能量上变得非常不利,以至于衣壳很容易解离和重新组装,克服了形成完美二十面体壳的能垒。此外,我们在成核和生长是主导途径的条件下监测衣壳的生长,并表明在集体和成核与生长途径中,无序-有序转变的关键在于弹性能量相对于系统中包括蛋白质-蛋白质相互作用和游离亚基化学势在内的其他力的强度。我们的发现至少部分解释了为什么在不同的条件下,包括生理条件下,完美的二十面体病毒粒子会形成。