Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States.
Department of Physics , Brandeis University , Waltham , Massachusetts 02453 , United States.
ACS Nano. 2018 Jun 26;12(6):5323-5332. doi: 10.1021/acsnano.8b00069. Epub 2018 Apr 25.
Virus coat proteins of small isometric plant viruses readily assemble into symmetric, icosahedral cages encapsulating noncognate cargo, provided the cargo meets a minimal set of chemical and physical requirements. While this capability has been intensely explored for certain virus-enabled nanotechnologies, additional applications require lower symmetry than that of an icosahedron. Here, we show that the coat proteins of an icosahedral virus can efficiently assemble around metal nanorods into spherocylindrical closed shells with hexagonally close-packed bodies and icosahedral caps. Comparison of chiral angles and packing defects observed by in situ atomic force microscopy with those obtained from molecular dynamics models offers insight into the mechanism of growth, and the influence of stresses associated with intrinsic curvature and assembly pathways.
小等轴对称植物病毒的外壳蛋白很容易组装成对称的二十面体笼,将非同源货物包裹在其中,前提是货物满足一组最小的化学和物理要求。虽然这种能力已经在某些病毒介导的纳米技术中得到了深入探索,但其他应用需要的对称性低于二十面体。在这里,我们展示了一种二十面体病毒的外壳蛋白可以有效地围绕金属纳米棒组装成具有六方密堆积体和二十面体帽的球形圆柱形封闭壳。通过原位原子力显微镜观察到的手性角和堆积缺陷与分子动力学模型获得的结果进行比较,为生长机制以及与固有曲率和组装途径相关的应力的影响提供了深入的了解。