Schredelseker Theresa, Driever Wolfgang
Developmental Biology, Institute Biology I, Faculty of Biology, University of Freiburg, Freiburg, Germany.
CIBSS and BIOSS - Centres for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
Front Neuroanat. 2020 Feb 6;14:3. doi: 10.3389/fnana.2020.00003. eCollection 2020.
Analyses of genoarchitecture recently stimulated substantial revisions of anatomical models for the developing hypothalamus in mammalian and other vertebrate systems. The prosomeric model proposes the hypothalamus to be derived from the secondary prosencephalon, and to consist of alar and basal regions. The basal hypothalamus can further be subdivided into tuberal and mamillary regions, each with distinct subregions. Albeit being a widely used model system for neurodevelopmental studies, no detailed genoarchitectural maps exist for the zebrafish () hypothalamus. Here, we compare expression domains of zebrafish genes, including , , , , , , , , and , the orthologs of which delimit specific subregions within the murine basal hypothalamus. We develop the highly conserved () gene as a novel marker for genoarchitectural analysis of hypothalamic regions. Our comparison of gene expression patterns reveals that the genoarchitecture of the basal hypothalamus in zebrafish embryos 48 hours post fertilization is highly similar to mouse embryos at E13.5. We found the tuberal hypothalamus in zebrafish embryos to be relatively large and to comprise previously ill-defined regions around the posterior hypothalamic recess. The mamillary hypothalamus is smaller and concentrates to rather medial areas in proximity to the anterior end of the neural tube floor plate. Within the basal hypothalamus we identified longitudinal and transverse tuberal and mamillary subregions topologically equivalent to those previously described in other vertebrates. However, the hypothalamic diencephalic boundary region and the posterior tuberculum still provide a challenge. We applied the updated prosomeric model to the developing zebrafish hypothalamus to facilitate cross-species comparisons. Accordingly, we applied the mammalian nomenclature of hypothalamic organization to zebrafish and propose it to replace some controversial previous nomenclature.
基因结构分析最近促使人们对哺乳动物和其他脊椎动物系统中发育中的下丘脑的解剖模型进行了重大修订。前脑模型提出下丘脑起源于次级前脑,由翼板和基板区域组成。基底下丘脑可进一步细分为结节区和乳头体区,每个区域又有不同的亚区域。尽管斑马鱼下丘脑是神经发育研究中广泛使用的模型系统,但目前尚无详细的基因结构图谱。在这里,我们比较了斑马鱼基因的表达域,包括、、、、、、、和,它们的直系同源基因界定了小鼠基底下丘脑内的特定亚区域。我们开发了高度保守的()基因作为下丘脑区域基因结构分析的新标记。我们对基因表达模式的比较表明,受精后48小时的斑马鱼胚胎基底下丘脑的基因结构与E13.5期的小鼠胚胎高度相似。我们发现斑马鱼胚胎中的结节下丘脑相对较大,包括下丘脑后隐窝周围以前定义不明确的区域。乳头体下丘脑较小,集中在神经管底板前端附近的内侧区域。在基底下丘脑内,我们确定了纵向和横向的结节区和乳头体亚区域,其拓扑结构与其他脊椎动物中先前描述的区域相当。然而,下丘脑间脑边界区域和后结节仍然是一个挑战。我们将更新后的前脑模型应用于发育中的斑马鱼下丘脑,以促进跨物种比较。因此,我们将哺乳动物下丘脑组织的命名法应用于斑马鱼,并建议用它来取代一些有争议的先前命名法。