Suppr超能文献

学习预测触觉形容词的感知分布。

Learning to Predict Perceptual Distributions of Haptic Adjectives.

作者信息

Richardson Benjamin A, Kuchenbecker Katherine J

机构信息

Haptic Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.

出版信息

Front Neurorobot. 2020 Feb 6;13:116. doi: 10.3389/fnbot.2019.00116. eCollection 2019.

Abstract

When humans touch an object with their fingertips, they can immediately describe its tactile properties using haptic adjectives, such as hardness and roughness; however, human perception is subjective and noisy, with significant variation across individuals and interactions. Recent research has worked to provide robots with similar haptic intelligence but was focused on identifying binary haptic adjectives, ignoring both attribute intensity and perceptual variability. Combining ordinal haptic adjective labels gathered from human subjects for a set of 60 objects with features automatically extracted from raw multi-modal tactile data collected by a robot repeatedly touching the same objects, we designed a machine-learning method that incorporates partial knowledge of the distribution of object labels into training; then, from a single interaction, it predicts a probability distribution over the set of ordinal labels. In addition to analyzing the collected labels (10 basic haptic adjectives) and demonstrating the quality of our method's predictions, we hold out specific features to determine the influence of individual sensor modalities on the predictive performance for each adjective. Our results demonstrate the feasibility of modeling both the intensity and the variation of haptic perception, two crucial yet previously neglected components of human haptic perception.

摘要

当人类用指尖触摸物体时,他们能够立即使用触觉形容词(如硬度和粗糙度)来描述其触觉属性;然而,人类的感知是主观且有噪声的,个体之间以及不同的触摸交互之间存在显著差异。最近的研究致力于为机器人赋予类似的触觉智能,但这些研究主要集中在识别二元触觉形容词,而忽略了属性强度和感知变异性。我们将从人类受试者那里收集到的一组60个物体的有序触觉形容词标签,与机器人反复触摸同一物体时从原始多模态触觉数据中自动提取的特征相结合,设计了一种机器学习方法,该方法将物体标签分布的部分知识纳入训练;然后从单次交互中预测有序标签集上的概率分布。除了分析收集到的标签(10个基本触觉形容词)并展示我们方法预测的质量外,我们还保留特定特征以确定单个传感器模态对每个形容词预测性能的影响。我们的结果证明了对触觉感知的强度和变异性进行建模的可行性,这是人类触觉感知中两个关键但以前被忽视的组成部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb19/7016190/122a593e997c/fnbot-13-00116-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验