Suppr超能文献

Osmotic work across inner medullary collecting duct accomplished by difference in reflection coefficients for urea and NaCl.

作者信息

Imai M, Taniguchi J, Yoshitomi K

机构信息

Department of Pharmacology, National Cardiovascular Center, Osaka, Japan.

出版信息

Pflugers Arch. 1988 Oct;412(6):557-67. doi: 10.1007/BF00583755.

Abstract

To demonstrate that osmotic work can be accomplished across the inner medullary collecting duct (IMCD) by the difference in reflection coefficients for urea and NaCl, phenomenological coefficients for urea and NaCl transport were determined in isolated segments of the hamster IMCD perfused in vitro. Arginine vasopressin at 100 microU/ml increased urea permeability from 11.5 +/- 2.9 to 31.7 +/- 4.2 x 10(-7) cm2 s-1 in the middle IMCD but not in the upper IMCD. Urea transport in the middle IMCD consisted of two components, transport with saturable kinetics and simple passive diffusion. Permeability to Na+ was very low (2 x 10(-7) cm2 s-1). Reflection coefficients as measured by the equiosmolality method, with raffinose being a reference solute, were 0.87 +/- 0.05 and 0.71 +/- 0.04 for urea and 1.03 +/- 0.07 and 0.91 +/- 0.04 for NaCl in the upper and the middle IMCD, respectively. Reflection coefficient for urea in the middle IMCD was 0.68 when determined by the zero volume flux method. When the middle IMCD was perfused with bicarbonate Krebs-Ringer (BKR) solution containing 200 mmol/l urea, the replacement of urea in the bathing fluid with equisomolal NaCl caused large volume flux (3.81 +/- 0.45 nl mm-1 min-1) associated with dilatation of intercellular space. The existence of vasopressin in the bath was essential for this phenomenon. This effect was inhibited by 5 x 10(-4) M phloretin in the bath, suggesting that the vasoressin-stimulated urea transport is responsible for this phenomenon. From these observations, we conclude that transport parameters of the middle IMCD are appropriate for accomplishment of osmotic work across this segment in the absence of physicochemical osmotic gradients.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验