Suppr超能文献

用于全基因组预测的稀疏卷积神经网络

Sparse Convolutional Neural Networks for Genome-Wide Prediction.

作者信息

Waldmann Patrik, Pfeiffer Christina, Mészáros Gábor

机构信息

Department of Animal Breeding and Genetics, The Swedish University of Agriculutural Sciences, Uppsala, Sweden.

Division of Livestock Science, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria.

出版信息

Front Genet. 2020 Feb 6;11:25. doi: 10.3389/fgene.2020.00025. eCollection 2020.

Abstract

Genome-wide prediction (GWP) has become the state-of-the art method in artificial selection. Data sets often comprise number of genomic markers and individuals in ranges from a few thousands to millions. Hence, computational efficiency is important and various machine learning methods have successfully been used in GWP. Neural networks (NN) and deep learning (DL) are very flexible methods that usually show outstanding prediction properties on complex structured data, but their use in GWP is nevertheless rare and debated. This study describes a powerful NN method for genomic marker data that can easily be extended. It is shown that a one-dimensional convolutional neural network (CNN) can be used to incorporate the ordinal information between markers and, together with pooling and -norm regularization, provides a sparse and computationally efficient approach for GWP. The method, denoted CNNGWP, is implemented in the deep learning software Keras, and hyper-parameters of the NN are tuned with Bayesian optimization. Model averaged ensemble predictions further reduce prediction error. Evaluations show that CNNGWP improves prediction error by more than 25% on simulated data and around 3% on real pig data compared with results obtained with GBLUP and the LASSO. In conclusion, the CNNGWP provides a promising approach for GWP, but the magnitude of improvement depends on the genetic architecture and the heritability.

摘要

全基因组预测(GWP)已成为人工选择中的先进方法。数据集通常包含从数千到数百万不等的基因组标记数量和个体数量。因此,计算效率很重要,各种机器学习方法已成功应用于GWP。神经网络(NN)和深度学习(DL)是非常灵活的方法,通常在复杂结构数据上表现出出色的预测性能,但它们在GWP中的应用仍然很少且存在争议。本研究描述了一种适用于基因组标记数据的强大神经网络方法,该方法易于扩展。结果表明,一维卷积神经网络(CNN)可用于整合标记之间的顺序信息,并与池化和 -范数正则化一起,为GWP提供一种稀疏且计算高效的方法。该方法称为CNNGWP,在深度学习软件Keras中实现,神经网络的超参数通过贝叶斯优化进行调整。模型平均集成预测进一步降低了预测误差。评估表明,与GBLUP和LASSO的结果相比,CNNGWP在模拟数据上的预测误差降低了25%以上,在真实猪数据上降低了约3%。总之,CNNGWP为GWP提供了一种有前景的方法,但改进的幅度取决于遗传结构和遗传力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc91/7029737/45d98c1f2d4f/fgene-11-00025-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验