Obermayer Benedikt, Holtgrewe Manuel, Nieminen Mikko, Messerschmidt Clemens, Beule Dieter
Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany.
Charité-Universitätsmedizin Berlin, Berlin, Germany.
PeerJ. 2020 Feb 19;8:e8607. doi: 10.7717/peerj.8607. eCollection 2020.
Single cell omics technologies present unique opportunities for biomedical and life sciences from lab to clinic, but the high dimensional nature of such data poses challenges for computational analysis and interpretation. Furthermore, FAIR data management as well as data privacy and security become crucial when working with clinical data, especially in cross-institutional and translational settings. Existing solutions are either bound to the desktop of one researcher or come with dependencies on vendor-specific technology for cloud storage or user authentication.
To facilitate analysis and interpretation of single-cell data by users without bioinformatics expertise, we present SCelVis, a flexible, interactive and user-friendly app for web-based visualization of pre-processed single-cell data. Users can survey multiple interactive visualizations of their single cell expression data and cell annotation, define cell groups by filtering or manual selection and perform differential gene expression, and download raw or processed data for further offline analysis. SCelVis can be run both on the desktop and cloud systems, accepts input from local and various remote sources using standard and open protocols, and allows for hosting data in the cloud and locally. We test and validate our visualization using publicly available scRNA-seq data.
SCelVis is implemented in Python using Dash by Plotly. It is available as a standalone application as a Python package, via Conda/Bioconda and as a Docker image. All components are available as open source under the permissive MIT license and are based on open standards and interfaces, enabling further development and integration with third party pipelines and analysis components. The GitHub repository is https://github.com/bihealth/scelvis.
单细胞组学技术为从实验室到临床的生物医学和生命科学带来了独特机遇,但此类数据的高维度特性给计算分析和解读带来了挑战。此外,在处理临床数据时,尤其是在跨机构和转化环境中,公平的数据管理以及数据隐私和安全变得至关重要。现有解决方案要么局限于单个研究人员的桌面,要么依赖特定供应商的技术进行云存储或用户认证。
为便于没有生物信息学专业知识的用户分析和解读单细胞数据,我们推出了SCelVis,这是一款灵活、交互式且用户友好的应用程序,用于基于网络可视化预处理后的单细胞数据。用户可以查看其单细胞表达数据和细胞注释的多个交互式可视化结果,通过过滤或手动选择定义细胞组,进行差异基因表达分析,并下载原始或处理后的数据以进行进一步的离线分析。SCelVis既可以在桌面系统上运行,也可以在云系统上运行,使用标准和开放协议接受来自本地和各种远程源的输入,并允许在云端和本地托管数据。我们使用公开可用的scRNA-seq数据测试和验证了我们的可视化方法。
SCelVis使用Plotly的Dash在Python中实现。它作为一个独立应用程序以Python包的形式提供,可通过Conda/Bioconda获取,也可以作为Docker镜像使用。所有组件在宽松的MIT许可下作为开源提供,并基于开放标准和接口,便于进一步开发以及与第三方管道和分析组件集成。GitHub仓库为https://github.com/bihealth/scelvis。