CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China.
ACS Chem Biol. 2020 Mar 20;15(3):766-773. doi: 10.1021/acschembio.9b00997. Epub 2020 Mar 9.
Totopotensamide A (TPM A, ) is a polyketide-peptide glycoside featuring a nonproteinogenic amino acid 4-chloro-6-methyl-5,7-dihydroxyphenylglycine (ClMeDPG). The biosynthetic gene cluster (BGC) of totopotensamides () was previously activated by manipulating transcription regulators in marine-derived SCSIO 02999. Herein, we report the heterologous expression of the BGC in TK64, and the production improvement of TPM A via in-frame deletion of two negative regulators and . The formation of ClMeDPG was proposed to require six enzymes, including four enzymes TotC1C2C3C4 for 3,5-dihydroxyphenylglycine (DPG) biosynthesis and two modifying enzymes TotH (halogenase) and TotM (methyltransferase). Heterologous expression of the four-gene cassette led to production of 3,5-dihydroxyphenylglyoxylate (DPGX). The aminotransferase TotC4 was biochemically characterized to convert DPGX to -DPG. Inactivation of led to a mutant accumulated a deschloro derivative TPM H1, and the Δi/Δi double mutant afforded two deschloro-desmethyl products TPMs HM1 and HM2. A hydrolysis experiment demonstrated that the DPG moiety in TPM HM2 was -DPG, consistent with that of the TotC4 enzymatic product. These results confirmed that TotH and TotM were responsible for ClMeDPG biosynthesis. Bioinformatics analysis indicated that both TotH and TotM might act on thiolation domain-tethered substrates. This study provided evidence for deciphering enzymes leading to ClMeDPG in TPM A, and unambiguously determined its absolute configuration as .
托罗替芬 A(TPM A)是一种聚酮肽糖苷,其特征在于含有非蛋白质氨基酸 4-氯-6-甲基-5,7-二羟基苯甘氨酸(ClMeDPG)。托罗替芬类化合物()的生物合成基因簇(BGC)先前通过操纵海洋来源的 SCSIO 02999 中的转录调节因子而被激活。在此,我们报告了在 TK64 中异源表达的 BGC,以及通过框内缺失两个负调节因子 和 来提高 TPM A 的产量。ClMeDPG 的形成需要 6 种酶,包括用于 3,5-二羟基苯甘氨酸(DPG)生物合成的 4 种酶 TotC1C2C3C4 和 2 种修饰酶 TotH(卤化酶)和 TotM(甲基转移酶)。四个基因盒 的异源表达导致 3,5-二羟基苯甘氨酸(DPGX)的产生。生物化学表征显示氨基转移酶 TotC4 将 DPGX 转化为 -DPG。 的失活导致突变体积累了去氯衍生物 TPM H1,而 Δi/Δi 双突变体则产生了两种去氯去甲基产物 TPMs HM1 和 HM2。水解实验表明,TPM HM2 中的 DPG 部分是 -DPG,与 TotC4 酶产物一致。这些结果证实 TotH 和 TotM 负责 ClMeDPG 的生物合成。生物信息学分析表明,TotH 和 TotM 可能都作用于硫代化结构域连接的底物上。该研究为阐明 TPM A 中 ClMeDPG 的酶提供了证据,并明确确定了其绝对构型为 。