Suppr超能文献

生理学,肺血管阻力

Physiology, Pulmonary Vascular Resistance

作者信息

Widrich Jason, Shetty Mrin

机构信息

University of Florida

University of Chicago (NorthShore)

Abstract

Pulmonary vascular resistance (PVR) is the resistance against blood flow from the 4 pulmonary veins of the lung to the left atrium. It is most commonly modeled using a modification of Ohm’s law (see Pulmonary Vascular Resistance Derived from Ohm's Law). Input pressure represents the mean pulmonary arterial pressure (15 mm Hg). The output pressure represents the pulmonary venous pressure, equivalent to the pulmonary capillary wedge or left atrial pressure (5 to 6 mm Hg). Total blood flow represents the cardiac output (5 to 6 L/min). A normal value for pulmonary vascular resistance using conventional units is 0.25 to 1.6 mmHg·min/l. Pulmonary vascular resistance is also represented in units of dynes/sec/cm (normal = 37dynes/sec/cm to 250 dynes/sec/cm). Poiseuille’s law has been used to model PVR (see Poiseuille's Law Modeling Pulmonary Vascular Resistance). In this equation, represents the length of the tube or vessel, its radius, and the fluid's viscosity. Poiseuille’s law clarifies the impact of the radius on resistance. For example, a 50% reduction in radius increases the resistance 16-fold. However, Ohm’s and Poiseuille’s laws are approximations of PVR. Both equations assume that blood flow is constant and linear, but it is pulsatile and laminar. Pulmonary blood vessels are dynamic, multi-layered tissues that expand to accommodate increased flow. Additionally, the non-homogenous quality of blood makes it difficult to ascertain a single value for viscosity. Blood viscosity varies with shear rate. The pressure drop from the pulmonary veins to the left atrium is approximately 10 mm Hg compared to a 100 mm Hg pressure gradient in the systemic circulation. Therefore, PVR is one-tenth of the resistance of systemic circulation. Low PVR maximizes the distribution of blood to the peripheral alveoli and facilitates gas exchange. Low resistance also enables the pulmonary system to pump the total cardiac output at low pressures. Most of the total vascular resistance and distribution of blood flow in the pulmonary circuit is due to the cross-sectional area of capillaries rather than veins, venules, or arteries. However, pulmonary resistance is approximately equally divided between arteries, capillaries, and veins. Because resistance increases in the capillaries, the largest drop in pulmonary pressure occurs, and to a lesser extent, in the small pulmonary arteries. In the systemic circulation, the largest pressure drop occurs in the arterioles.

摘要

肺血管阻力(PVR)是指肺的4条肺静脉流向左心房时血液流动所遇到的阻力。最常用的是通过对欧姆定律进行修正来模拟它(见源自欧姆定律的肺血管阻力)。输入压力代表平均肺动脉压(15毫米汞柱)。输出压力代表肺静脉压,等同于肺毛细血管楔压或左心房压(5至6毫米汞柱)。总血流量代表心输出量(5至6升/分钟)。使用传统单位时,肺血管阻力的正常值为0.25至1.6毫米汞柱·分钟/升。肺血管阻力也可以用达因/秒/厘米为单位表示(正常范围为37达因/秒/厘米至250达因/秒/厘米)。泊肃叶定律已被用于模拟肺血管阻力(见用泊肃叶定律模拟肺血管阻力)。在这个公式中, 代表管道或血管的长度, 代表其半径, 代表流体的粘度。泊肃叶定律阐明了半径对阻力的影响。例如,半径减小50%会使阻力增加16倍。然而,欧姆定律和泊肃叶定律只是对肺血管阻力的近似描述。这两个公式都假定血流是恒定且呈线性的,但实际上血流是脉动且呈层流的。肺血管是动态的多层组织,会扩张以适应增加的血流量。此外,血液的非均匀性质使得难以确定单一的粘度值。血液粘度随剪切速率而变化。从肺静脉到左心房的压力降约为10毫米汞柱,而体循环中的压力梯度为100毫米汞柱。因此,肺血管阻力是体循环阻力的十分之一。低肺血管阻力可使血液最大限度地分布到外周肺泡,促进气体交换。低阻力还使肺系统能够在低压下泵出全心输出量。肺循环中大部分的总血管阻力和血流分布是由毛细血管的横截面积决定的,而不是静脉、小静脉或动脉。然而,肺循环的阻力在动脉、毛细血管和静脉之间大致平均分配。由于毛细血管中的阻力增加,肺循环中最大的压力降发生在毛细血管,在较小程度上也发生在小肺动脉。在体循环中,最大的压力降发生在小动脉。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验