Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
PLoS Comput Biol. 2020 Mar 2;16(3):e1007605. doi: 10.1371/journal.pcbi.1007605. eCollection 2020 Mar.
Intracellular calcium ([Ca2+]i) is a basic and ubiquitous cellular signal controlling a wide variety of biological processes. A remarkable example is the steering of sea urchin spermatozoa towards the conspecific egg by a spatially and temporally orchestrated series of [Ca2+]i spikes. Although this process has been an experimental paradigm for reproduction and sperm chemotaxis studies, the composition and regulation of the signalling network underlying the cytosolic calcium fluctuations are hitherto not fully understood. Here, we used a differential equations model of the signalling network to assess which set of channels can explain the characteristic envelope and temporal organisation of the [Ca2+]i-spike trains. The signalling network comprises an initial membrane hyperpolarisation produced by an Upstream module triggered by the egg-released chemoattractant peptide, via receptor activation, cGMP synthesis and decay. Followed by downstream modules leading to intraflagellar pH (pHi), voltage and [Ca2+]i fluctuations. The Upstream module outputs were fitted to kinetic data on cGMP activity and early membrane potential changes measured in bulk cell populations. Two candidate modules featuring voltage-dependent Ca2+-channels link these outputs to the downstream dynamics and can independently explain the typical decaying envelope and the progressive spacing of the spikes. In the first module, [Ca2+]i-spike trains require the concerted action of a classical CaV-like channel and a potassium channel, BK (Slo1), whereas the second module relies on pHi-dependent CatSper dynamics articulated with voltage-dependent neutral sodium-proton exchanger (NHE). We analysed the dynamics of these two modules alone and in mixed scenarios. We show that the [Ca2+]i dynamics observed experimentally after sustained alkalinisation can be reproduced by a model featuring the CatSper and NHE module but not by those including the pH-independent CaV and BK module or proportionate mixed scenarios. We conclude in favour of the module containing CatSper and NHE and highlight experimentally testable predictions that would corroborate this conclusion.
细胞内钙离子([Ca2+]i)是一种基本且普遍存在的细胞信号,控制着广泛的生物过程。一个显著的例子是,通过时空协调的一系列[Ca2+]i 峰,引导海胆精子向同种卵子运动。尽管这个过程一直是生殖和精子趋化性研究的实验范例,但细胞溶质钙离子波动背后的信号网络的组成和调节至今尚未完全理解。在这里,我们使用信号网络的微分方程模型来评估哪一组通道可以解释[Ca2+]i 峰列车的特征包络和时间组织。信号网络包括由上游模块产生的初始膜超极化,该模块由卵释放的趋化肽触发,通过受体激活、cGMP 合成和降解。随后是导致鞭毛内 pH(pHi)、电压和[Ca2+]i 波动的下游模块。上游模块的输出与 cGMP 活性的动力学数据和在细胞群体中测量的早期膜电位变化相拟合。两个具有电压依赖性钙通道的候选模块将这些输出与下游动力学联系起来,并可以独立解释典型的衰减包络和尖峰的逐渐间隔。在第一个模块中,[Ca2+]i 峰列车需要经典的 CaV 样通道和钾通道 BK(Slo1)的协同作用,而第二个模块依赖于与电压依赖性中性钠-质子交换器(NHE)协同作用的 pH 依赖性 CatSper 动力学。我们单独分析了这两个模块的动力学以及混合情况下的动力学。我们表明,在持续碱化后观察到的实验[Ca2+]i 动力学可以通过包含 CatSper 和 NHE 模块的模型重现,但不能通过包含 pH 独立的 CaV 和 BK 模块或比例混合场景的模型重现。我们得出支持包含 CatSper 和 NHE 的模块的结论,并强调了可以验证这一结论的可实验验证的预测。