Suppr超能文献

使用卷积暹罗网络对小数据集进行基于图像的植物物种识别

Using a Convolutional Siamese Network for Image-Based Plant Species Identification with Small Datasets.

作者信息

Figueroa-Mata Geovanni, Mata-Montero Erick

机构信息

School of Mathematics, Costa Rica Institute of Technology, calle 15, avenida 14, Cartago 30101, Costa Rica.

School of Computing, Costa Rica Institute of Technology, calle 15, avenida 14, Cartago 30101, Costa Rica.

出版信息

Biomimetics (Basel). 2020 Mar 1;5(1):8. doi: 10.3390/biomimetics5010008.

Abstract

The application of deep learning techniques may prove difficult when datasets are small. Recently, techniques such as one-shot learning, few-shot learning, and Siamese networks have been proposed to address this problem. In this paper, we propose the use a convolutional Siamese network (CSN) that learns a similarity metric that discriminates between plant species based on images of leaves. Once the CSN has learned the similarity function, its discriminatory power is generalized to classify not just new pictures of the species used during training but also entirely new species for which only a few images are available. This is achieved by exposing the network to pairs of similar and dissimilar observations and minimizing the Euclidean distance between similar pairs while simultaneously maximizing it between dissimilar pairs. We conducted experiments to study two different scenarios. In the first one, the CSN was trained and validated with datasets that comprise 5, 10, 15, 20, 25, and 30 pictures per species, extracted from the well-known FLAVIAmathsizesmall dataset. Then, the trained model was tested with another dataset composed of 320 images (10 images per species) also from FLAVIAmathsizesmall. The obtained accuracy was compared with the results of feeding the same training, validation, and testing datasets to a convolutional neural network (CNN) in order to determine if there is a threshold value for dataset size that defines the intervals for which either the CSN or the CNN has better accuracy. In the second studied scenario, the accuracy of both the CSN and the CNN-both trained and validated with the same datasets extracted from FLAVIAmathsizesmall-were compared when tested on a set of images of leaves of 20 Costa Rican tree species that are not represented in FLAVIAmathsizesmall.

摘要

当数据集较小时,深度学习技术的应用可能会遇到困难。最近,诸如一次性学习、少样本学习和连体网络等技术已被提出以解决这一问题。在本文中,我们建议使用卷积连体网络(CSN),它学习一种相似性度量,该度量基于叶片图像来区分植物物种。一旦CSN学习到相似性函数,其判别能力不仅可以推广到对训练期间使用的物种的新图片进行分类,还可以对仅有少量图像的全新物种进行分类。这是通过让网络接触相似和不相似的观测对,并最小化相似对之间的欧几里得距离,同时最大化不相似对之间的欧几里得距离来实现的。我们进行了实验以研究两种不同的情况。在第一种情况中,CSN使用从著名的FLAVIA数据集提取的每个物种包含5、10、15、20、25和30张图片的数据集进行训练和验证。然后,使用同样来自FLAVIA的另一个由320张图像(每个物种10张图像)组成的数据集对训练好的模型进行测试。将获得的准确率与将相同的训练、验证和测试数据集输入到卷积神经网络(CNN)的结果进行比较,以确定是否存在数据集大小的阈值,该阈值定义了CSN或CNN具有更高准确率的区间。在第二种研究的情况中,当在一组未在FLAVIA中出现的20种哥斯达黎加树种的叶片图像上进行测试时,比较了CSN和CNN(两者均使用从FLAVIA提取的相同数据集进行训练和验证)的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/425e/7148474/c540d037de28/biomimetics-05-00008-g001.jpg

相似文献

1
Using a Convolutional Siamese Network for Image-Based Plant Species Identification with Small Datasets.
Biomimetics (Basel). 2020 Mar 1;5(1):8. doi: 10.3390/biomimetics5010008.
3
Chart Classification Using Siamese CNN.
J Imaging. 2021 Oct 21;7(11):220. doi: 10.3390/jimaging7110220.
4
CovidExpert: A Triplet Siamese Neural Network framework for the detection of COVID-19.
Inform Med Unlocked. 2023;37:101156. doi: 10.1016/j.imu.2022.101156. Epub 2023 Jan 13.
5
Using Deep Learning to Identify Costa Rican Native Tree Species From Wood Cut Images.
Front Plant Sci. 2022 Apr 1;13:789227. doi: 10.3389/fpls.2022.789227. eCollection 2022.
6
Convolutional Neural Network for Automatic Identification of Plant Diseases with Limited Data.
Plants (Basel). 2020 Dec 24;10(1):28. doi: 10.3390/plants10010028.
7
Combating data incompetence in pollen images detection and classification for pollinosis prevention.
Comput Biol Med. 2022 Jan;140:105064. doi: 10.1016/j.compbiomed.2021.105064. Epub 2021 Nov 24.
8
Self-supervised learning for remote sensing scene classification under the few shot scenario.
Sci Rep. 2023 Jan 9;13(1):433. doi: 10.1038/s41598-022-27313-5.
10
A computer-assisted human peripheral blood leukocyte image classification method based on Siamese network.
Med Biol Eng Comput. 2020 Jul;58(7):1575-1582. doi: 10.1007/s11517-020-02180-2. Epub 2020 May 16.

引用本文的文献

1
An efficient non-parametric feature calibration method for few-shot plant disease classification.
Front Plant Sci. 2025 May 19;16:1541982. doi: 10.3389/fpls.2025.1541982. eCollection 2025.
2
Evaluation of metric and representation learning approaches: Effects of representations driven by relative distance on the performance.
2023 Intell Method Syst Appl (2023). 2023 Jul;2023:545-550. doi: 10.1109/imsa58542.2023.10217475. Epub 2023 Aug 24.
3
Biology-Informed Recurrent Neural Network for Pandemic Prediction Using Multimodal Data.
Biomimetics (Basel). 2023 Apr 14;8(2):158. doi: 10.3390/biomimetics8020158.
4
Using Deep Learning to Identify Costa Rican Native Tree Species From Wood Cut Images.
Front Plant Sci. 2022 Apr 1;13:789227. doi: 10.3389/fpls.2022.789227. eCollection 2022.
5
Feasibility study to improve deep learning in OCT diagnosis of rare retinal diseases with few-shot classification.
Med Biol Eng Comput. 2021 Feb;59(2):401-415. doi: 10.1007/s11517-021-02321-1. Epub 2021 Jan 25.
6
Imaging Tremor Quantification for Neurological Disease Diagnosis.
Sensors (Basel). 2020 Nov 22;20(22):6684. doi: 10.3390/s20226684.

本文引用的文献

1
Applications of deep convolutional neural networks to digitized natural history collections.
Biodivers Data J. 2017 Nov 2(5):e21139. doi: 10.3897/BDJ.5.e21139. eCollection 2017.
2
Going deeper in the automated identification of Herbarium specimens.
BMC Evol Biol. 2017 Aug 11;17(1):181. doi: 10.1186/s12862-017-1014-z.
3
One-shot learning of object categories.
IEEE Trans Pattern Anal Mach Intell. 2006 Apr;28(4):594-611. doi: 10.1109/TPAMI.2006.79.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验