Suppr超能文献

深度卷积神经网络在数字化自然历史藏品中的应用。

Applications of deep convolutional neural networks to digitized natural history collections.

作者信息

Schuettpelz Eric, Frandsen Paul B, Dikow Rebecca B, Brown Abel, Orli Sylvia, Peters Melinda, Metallo Adam, Funk Vicki A, Dorr Laurence J

机构信息

National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of America.

Office of the Chief Information Officer, Smithsonian Institution, Washington, DC, United States of America.

出版信息

Biodivers Data J. 2017 Nov 2(5):e21139. doi: 10.3897/BDJ.5.e21139. eCollection 2017.

Abstract

Natural history collections contain data that are critical for many scientific endeavors. Recent efforts in mass digitization are generating large datasets from these collections that can provide unprecedented insight. Here, we present examples of how deep convolutional neural networks can be applied in analyses of imaged herbarium specimens. We first demonstrate that a convolutional neural network can detect mercury-stained specimens across a collection with 90% accuracy. We then show that such a network can correctly distinguish two morphologically similar plant families 96% of the time. Discarding the most challenging specimen images increases accuracy to 94% and 99%, respectively. These results highlight the importance of mass digitization and deep learning approaches and reveal how they can together deliver powerful new investigative tools.

摘要

自然历史藏品包含对许多科学研究至关重要的数据。近期大规模数字化的努力正在从这些藏品中生成大型数据集,从而提供前所未有的见解。在此,我们展示了深度卷积神经网络如何应用于对成像的植物标本馆标本的分析。我们首先证明,卷积神经网络能够以90%的准确率在整个藏品中检测出汞染色的标本。然后我们表明,这样的网络能够在96%的时间内正确区分两个形态相似的植物科。丢弃最具挑战性的标本图像后,准确率分别提高到94%和99%。这些结果突出了大规模数字化和深度学习方法的重要性,并揭示了它们如何共同提供强大的新研究工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8115/5680669/a9d0c2ee0cb7/bdj-05-e21139-g001_a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验