Suppr超能文献

基于集成的癌症基因组体细胞突变calling。

Ensemble-Based Somatic Mutation Calling in Cancer Genomes.

机构信息

Computational and Systems Biology 3, Genome Institute of Singapore, A∗STAR (Agency for Science, Technology and Research), Singapore, Singapore.

National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.

出版信息

Methods Mol Biol. 2020;2120:37-46. doi: 10.1007/978-1-0716-0327-7_3.

Abstract

Identification of somatic mutations in tumor tissue is challenged by both technical artifacts, diverse somatic mutational processes, and genetic heterogeneity in the tumors. Indeed, recent independent benchmark studies have revealed low concordance between different somatic mutation callers. Here, we describe Somatic Mutation calling method using a Random Forest (SMuRF), a portable ensemble method that combines the predictions and auxiliary features from individual mutation callers using supervised machine learning. SMuRF has improved prediction accuracy for both somatic point mutations (single nucleotide variants; SNVs) and small insertions/deletions (indels) in cancer genomes and exomes. Here, we describe the method and provide a tutorial on the installation and application of SMuRF.

摘要

肿瘤组织中的体细胞突变的鉴定受到技术伪影、不同的体细胞突变过程以及肿瘤中的遗传异质性的挑战。事实上,最近的独立基准研究表明,不同的体细胞突变 caller 之间的一致性较低。在这里,我们描述了使用随机森林(SMuRF)进行体细胞突变calling 的方法,这是一种可移植的集成方法,它使用监督机器学习结合了来自各个突变 caller 的预测和辅助特征。SMuRF 提高了癌症基因组和外显子中体细胞点突变(单核苷酸变异;SNVs)和小插入/缺失(indels)的预测准确性。在这里,我们描述了该方法,并提供了关于 SMuRF 的安装和应用的教程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验