Suppr超能文献

SMuRF:体细胞突变的便携式精确集成预测

SMuRF: portable and accurate ensemble prediction of somatic mutations.

作者信息

Huang Weitai, Guo Yu Amanda, Muthukumar Karthik, Baruah Probhonjon, Chang Mei Mei, Jacobsen Skanderup Anders

机构信息

Department of Computational and Systems Biology, Agency for Science Technology and Research, Genome Institute of Singapore, Singapore, Singapore.

Graduate School of Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.

出版信息

Bioinformatics. 2019 Sep 1;35(17):3157-3159. doi: 10.1093/bioinformatics/btz018.

Abstract

SUMMARY

Somatic Mutation calling method using a Random Forest (SMuRF) integrates predictions and auxiliary features from multiple somatic mutation callers using a supervised machine learning approach. SMuRF is trained on community-curated matched tumor and normal whole genome sequencing data. SMuRF predicts both SNVs and indels with high accuracy in genome or exome-level sequencing data. Furthermore, the method is robust across multiple tested cancer types and predicts low allele frequency variants with high accuracy. In contrast to existing ensemble-based somatic mutation calling approaches, SMuRF works out-of-the-box and is orders of magnitudes faster.

AVAILABILITY AND IMPLEMENTATION

The method is implemented in R and available at https://github.com/skandlab/SMuRF. SMuRF operates as an add-on to the community-developed bcbio-nextgen somatic variant calling pipeline.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

摘要

使用随机森林的体细胞突变检测方法(SMuRF)采用监督式机器学习方法,整合了来自多个体细胞突变检测工具的预测结果和辅助特征。SMuRF基于社区整理的匹配肿瘤和正常全基因组测序数据进行训练。在基因组或外显子水平测序数据中,SMuRF能高精度地预测单核苷酸变异(SNV)和插入缺失(indel)。此外,该方法在多种测试癌症类型中都表现稳健,能高精度地预测低等位基因频率变异。与现有的基于集成的体细胞突变检测方法相比,SMuRF开箱即用,速度快几个数量级。

可用性与实现方式

该方法用R语言实现,可在https://github.com/skandlab/SMuRF获取。SMuRF作为社区开发的bcbio-nextgen体细胞变异检测流程的插件运行。

补充信息

补充数据可在《生物信息学》在线获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验