Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, A Division of the National Health Laboratory Service, National Institute for Communicable Diseases, Johannesburg, South Africa.
Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
Mycoses. 2020 May;63(5):471-477. doi: 10.1111/myc.13070. Epub 2020 Apr 13.
The prevalence of azole resistance in C parapsilosis is very low in most parts of the world. However, South Africa has reported an exceptionally high prevalence of azole resistance in C parapsilosis strains isolated from candidaemia cases. We aimed to determine the possible molecular mechanisms of fluconazole resistance in C parapsilosis isolates obtained through surveillance at a large neonatal unit at a South African academic hospital.
We sequenced the ERG11 and MRR1 genes of C parapsilosis isolates recovered from cases of neonatal candidemia, followed by microsatellite genotyping. A total of 73 isolates with antifungal susceptibility results were analysed.
Of these, 57 (78%) were resistant, 11 (15%) susceptible dose-dependent and 5 (7%) susceptible. The most commonly identified amino acid substitution within the ERG11 gene was Y132F in 68% (39/57) of fluconazole-resistant isolates and none in susceptible isolates. Three amino acid substitutions (R405K, G583R and A619V) and 1 nucleotide deletion at position 1331 were identified within MRR1 gene in 19 (26%) isolates. Microsatellite genotyping grouped isolates into four clusters (50 isolates). Cluster 1 accounted for 23% (17/73) of all cases, cluster 2 for 22% (16/73), cluster 3 for 14% (10/73) and cluster 4 for 10% (7/73). We found an association between cluster type and fluconazole resistance (P-value = .004). Isolates harbouring the Y132F substitution were more likely to belong to a cluster than non-Y132F isolates.
Fluconazole resistance in C parapsilosis strains from a single South African neonatal unit was associated with cluster type and predominantly driven by Y123F amino acid substitutions in the ERG11 gene.
在世界上大多数地区,近平滑念珠菌对唑类药物的耐药率非常低。然而,南非报告称,从念珠菌血症病例中分离出的近平滑念珠菌菌株对唑类药物的耐药率异常高。我们旨在确定从南非一家学术医院的大型新生儿病房进行监测获得的近平滑念珠菌分离株中氟康唑耐药的可能分子机制。
我们对从新生儿念珠菌血症病例中回收的近平滑念珠菌分离株进行 ERG11 和 MRR1 基因测序,然后进行微卫星基因分型。共分析了 73 株具有抗真菌药敏结果的分离株。
其中,57 株(78%)耐药,11 株(15%)为敏感剂量依赖性,5 株(7%)为敏感。在氟康唑耐药分离株中,ERG11 基因内最常见的氨基酸取代是 Y132F,占 68%(39/57),而在敏感分离株中则没有。在 19 株(26%)分离株中发现了 MRR1 基因内的 3 个氨基酸取代(R405K、G583R 和 A619V)和 1 个核苷酸缺失位置 1331。微卫星基因分型将分离株分为 4 个簇(50 株)。簇 1 占所有病例的 23%(17/73),簇 2 占 22%(16/73),簇 3 占 14%(10/73),簇 4 占 10%(7/73)。我们发现簇类型与氟康唑耐药之间存在关联(P 值=.004)。携带 Y132F 取代的分离株比非 Y132F 分离株更有可能属于一个簇。
来自南非单个新生儿病房的近平滑念珠菌菌株的氟康唑耐药与簇类型相关,主要由 ERG11 基因中的 Y123F 氨基酸取代驱动。