Suppr超能文献

南非新生儿病房中出现 ERG11 基因 Y132F 取代导致侵袭性感染的氟康唑耐药近平滑假丝酵母菌株。

Fluconazole-resistant Candida parapsilosis strains with a Y132F substitution in the ERG11 gene causing invasive infections in a neonatal unit, South Africa.

机构信息

Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, A Division of the National Health Laboratory Service, National Institute for Communicable Diseases, Johannesburg, South Africa.

Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.

出版信息

Mycoses. 2020 May;63(5):471-477. doi: 10.1111/myc.13070. Epub 2020 Apr 13.

Abstract

INTRODUCTION

The prevalence of azole resistance in C parapsilosis is very low in most parts of the world. However, South Africa has reported an exceptionally high prevalence of azole resistance in C parapsilosis strains isolated from candidaemia cases. We aimed to determine the possible molecular mechanisms of fluconazole resistance in C parapsilosis isolates obtained through surveillance at a large neonatal unit at a South African academic hospital.

METHODS

We sequenced the ERG11 and MRR1 genes of C parapsilosis isolates recovered from cases of neonatal candidemia, followed by microsatellite genotyping. A total of 73 isolates with antifungal susceptibility results were analysed.

RESULTS

Of these, 57 (78%) were resistant, 11 (15%) susceptible dose-dependent and 5 (7%) susceptible. The most commonly identified amino acid substitution within the ERG11 gene was Y132F in 68% (39/57) of fluconazole-resistant isolates and none in susceptible isolates. Three amino acid substitutions (R405K, G583R and A619V) and 1 nucleotide deletion at position 1331 were identified within MRR1 gene in 19 (26%) isolates. Microsatellite genotyping grouped isolates into four clusters (50 isolates). Cluster 1 accounted for 23% (17/73) of all cases, cluster 2 for 22% (16/73), cluster 3 for 14% (10/73) and cluster 4 for 10% (7/73). We found an association between cluster type and fluconazole resistance (P-value = .004). Isolates harbouring the Y132F substitution were more likely to belong to a cluster than non-Y132F isolates.

CONCLUSION

Fluconazole resistance in C parapsilosis strains from a single South African neonatal unit was associated with cluster type and predominantly driven by Y123F amino acid substitutions in the ERG11 gene.

摘要

简介

在世界上大多数地区,近平滑念珠菌对唑类药物的耐药率非常低。然而,南非报告称,从念珠菌血症病例中分离出的近平滑念珠菌菌株对唑类药物的耐药率异常高。我们旨在确定从南非一家学术医院的大型新生儿病房进行监测获得的近平滑念珠菌分离株中氟康唑耐药的可能分子机制。

方法

我们对从新生儿念珠菌血症病例中回收的近平滑念珠菌分离株进行 ERG11 和 MRR1 基因测序,然后进行微卫星基因分型。共分析了 73 株具有抗真菌药敏结果的分离株。

结果

其中,57 株(78%)耐药,11 株(15%)为敏感剂量依赖性,5 株(7%)为敏感。在氟康唑耐药分离株中,ERG11 基因内最常见的氨基酸取代是 Y132F,占 68%(39/57),而在敏感分离株中则没有。在 19 株(26%)分离株中发现了 MRR1 基因内的 3 个氨基酸取代(R405K、G583R 和 A619V)和 1 个核苷酸缺失位置 1331。微卫星基因分型将分离株分为 4 个簇(50 株)。簇 1 占所有病例的 23%(17/73),簇 2 占 22%(16/73),簇 3 占 14%(10/73),簇 4 占 10%(7/73)。我们发现簇类型与氟康唑耐药之间存在关联(P 值=.004)。携带 Y132F 取代的分离株比非 Y132F 分离株更有可能属于一个簇。

结论

来自南非单个新生儿病房的近平滑念珠菌菌株的氟康唑耐药与簇类型相关,主要由 ERG11 基因中的 Y123F 氨基酸取代驱动。

相似文献

3
Precise genome editing underlines the distinct contributions of mutations in , , , and genes to antifungal resistance in .
Antimicrob Agents Chemother. 2024 Jun 5;68(6):e0002224. doi: 10.1128/aac.00022-24. Epub 2024 Apr 16.
5
Fluconazole-resistant Candida parapsilosis: fast detection of the Y132F ERG11p substitution, and a proposed microsatellite genotyping scheme.
Clin Microbiol Infect. 2024 Nov;30(11):1447-1452. doi: 10.1016/j.cmi.2024.07.002. Epub 2024 Jul 14.
8
Epidemiology and Molecular Basis of Resistance to Fluconazole Among Clinical Candida parapsilosis Isolates in Kuwait.
Microb Drug Resist. 2017 Dec;23(8):966-972. doi: 10.1089/mdr.2016.0336. Epub 2017 Mar 29.
10
Detection and Characterization of Two Phenotypes of Candida parapsilosis in South Korea: Clinical Features and Microbiological Findings.
Microbiol Spectr. 2023 Jun 15;11(3):e0006623. doi: 10.1128/spectrum.00066-23. Epub 2023 May 8.

引用本文的文献

2
Bixin from L.: Analytical Method Validation, Physicochemical Characterization, and Selective Antifungal Activity against spp. .
ACS Omega. 2025 Aug 15;10(33):37874-37888. doi: 10.1021/acsomega.5c04986. eCollection 2025 Aug 26.
4
Understanding the mechanisms of resistance to azole antifungals in species.
JAC Antimicrob Resist. 2025 Jun 23;7(3):dlaf106. doi: 10.1093/jacamr/dlaf106. eCollection 2025 Jun.
8
Twenty Years in EUCAST Anti-Fungal Susceptibility Testing: Progress & Remaining Challenges.
Mycopathologia. 2024 Jul 11;189(4):64. doi: 10.1007/s11046-024-00861-2.
10

本文引用的文献

1
3
An Azole-Resistant Outbreak: Clonal Persistence in the Intensive Care Unit of a Brazilian Teaching Hospital.
Front Microbiol. 2018 Dec 5;9:2997. doi: 10.3389/fmicb.2018.02997. eCollection 2018.
5
Epidemiology and Molecular Basis of Resistance to Fluconazole Among Clinical Candida parapsilosis Isolates in Kuwait.
Microb Drug Resist. 2017 Dec;23(8):966-972. doi: 10.1089/mdr.2016.0336. Epub 2017 Mar 29.
9
Nosocomial Candidiasis: Antifungal Stewardship and the Importance of Rapid Diagnosis.
Med Mycol. 2016 Jan;54(1):1-22. doi: 10.1093/mmy/myv076. Epub 2015 Sep 18.
10
Candida parapsilosis Resistance to Fluconazole: Molecular Mechanisms and In Vivo Impact in Infected Galleria mellonella Larvae.
Antimicrob Agents Chemother. 2015 Oct;59(10):6581-7. doi: 10.1128/AAC.01177-15. Epub 2015 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验