Suppr超能文献

追踪无形之战:印度中部一家三级护理教学医院中多重耐药病原体的自动化分析

Tracking the Invisible War: Automated Profiling of Multidrug-Resistant Pathogens in a Tertiary Care Teaching Hospital in Central India.

作者信息

Mohod Smita V, Gedam Dilip S, Rajan Arya L, Khadse Ravindra K, John Riya

机构信息

Microbiology, Indira Gandhi Government Medical College & Hospital, Nagpur, IND.

出版信息

Cureus. 2025 Jun 11;17(6):e85778. doi: 10.7759/cureus.85778. eCollection 2025 Jun.

Abstract

Background Automated systems such as VITEK® 2 Compact have revolutionized microbial diagnostics by offering rapid identification and antimicrobial susceptibility testing (AST). This study aimed to evaluate the spectrum of bacterial and fungal isolates and their resistance profiles using the VITEK 2 system. Material and methods A retrospective cross-sectional analysis was conducted over one year (January 2024 to December 2024) in the Department of Microbiology of a tertiary care hospital in Central India. The present study included only those clinical specimens that were initially processed using conventional methods but proved difficult to identify based on biochemical reactions alone. These included blood, sputum, wound swab, pus, cervicovaginal swab, endotracheal aspirate, pleural fluid, bronchoalveolar lavage, stool, corneal scraping, and cerebrospinal fluid. Such samples were subsequently subjected to identification by the VITEK 2 Compact system to ensure rapid and accurate results. The resistance patterns of Gram-negative organisms including and non-fermenters, gram-positive cocci, and yeasts were analyzed. These findings were entered into the Microsoft Excel Version 2010. Statistical analysis was carried out using SPSS Version 20 for Windows package (IBM Corp., Armonk, NY, USA). Observed association of multidrug resistant (MDR) isolates from ICU with observed multidrug resistance from non-ICU was tested by calculating the p-value using the chi-square test (p-value of 0.00055, i.e., p < 0.05 was considered significant). Results Out of 284 isolates, 35 (12%), 24 (8%), 33 (11%), and 14 (5%) were predominant. Isolated organisms were found more in the ICU, 195 (69%), than non-ICU, 89 (31%), setting. The proportion of MDR isolates is significantly higher in the ICU (92.82%, 181/195) compared to the non-ICU setting (78.65%, 70/89). High resistance was noted among against β-lactams (100%) and fluoroquinolones (87.5%). Non-fermenters such as showed 100% resistance to multiple drugs, indicating pan-drug resistance in some strains. Among gram-positive organisms, penicillin, erythromycin, levofloxacin, ciprofloxacin, and chloramphenicol were tested for showed 100% resistance to penicillin, erythromycin, and chloramphenicol. Yeasts exhibited varied resistance, with and showing higher resistance to fluconazole, 4 (57%) and 1 (100%), respectively. Conclusion The study reveals a significant rising occurrence of multidrug-resistant organisms, particularly in critical care areas. The VITEK 2 Compact system enabled rapid and precise identification of resistance profiles, including rare and highly resistant strains. Its use is crucial for timely, targeted therapy and reinforces the need for robust diagnostic and antimicrobial stewardship practices.

摘要

背景

诸如VITEK® 2 Compact之类的自动化系统通过提供快速鉴定和抗菌药物敏感性测试(AST),彻底改变了微生物诊断。本研究旨在使用VITEK 2系统评估细菌和真菌分离株的谱系及其耐药谱。

材料和方法

在印度中部一家三级护理医院的微生物科进行了为期一年(2024年1月至2024年12月)的回顾性横断面分析。本研究仅纳入那些最初使用传统方法处理但仅根据生化反应难以鉴定的临床标本。这些标本包括血液、痰液、伤口拭子、脓液、宫颈阴道拭子、气管内吸出物、胸腔积液、支气管肺泡灌洗、粪便、角膜刮片和脑脊液。随后,这些样本通过VITEK 2 Compact系统进行鉴定,以确保结果快速准确。分析了革兰氏阴性菌(包括[具体菌名未给出]和非发酵菌)、革兰氏阳性球菌和酵母菌的耐药模式。这些结果录入Microsoft Excel 2010版本。使用适用于Windows的SPSS 20版本(美国纽约州阿蒙克市IBM公司)进行统计分析。通过卡方检验计算p值,对重症监护病房(ICU)中观察到的多重耐药(MDR)分离株与非ICU中观察到的多重耐药情况之间的关联进行检验(p值为0.00055,即p < 0.05被认为具有统计学意义)。

结果

在284株分离株中,[具体菌名未给出1] 35株(12%)、[具体菌名未给出2] 24株(8%)、[具体菌名未给出3] 33株(11%)和[具体菌名未给出4] 14株(5%)为主要菌株。在ICU中分离出的菌株(195株,69%)比非ICU(89株,31%)更多。与非ICU环境(78.65%,70/89)相比,ICU中MDR分离株的比例显著更高(92.82%,181/195)。观察到[具体菌名未给出1]对β-内酰胺类药物(100%)和氟喹诺酮类药物(87.5%)耐药性较高。诸如[具体菌名未给出5]之类的非发酵菌对多种药物表现出100%的耐药性,表明某些菌株存在泛耐药性。在革兰氏阳性菌中,对[具体菌名未给出6]测试了青霉素、红霉素、左氧氟沙星、环丙沙星和氯霉素,结果显示对青霉素、红霉素和氯霉素耐药率为100%。酵母菌表现出不同的耐药性,[具体菌名未给出7]和[具体菌名未给出8]对氟康唑耐药性较高,分别为4株(57%)和1株(100%)。

结论

该研究揭示了多重耐药菌的发生率显著上升,尤其是在重症监护区域。VITEK 2 Compact系统能够快速准确地鉴定耐药谱,包括罕见和高度耐药菌株。其应用对于及时、有针对性的治疗至关重要,并强化了对强大的诊断和抗菌药物管理实践的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d75/12249041/7c2af773ef89/cureus-0017-00000085778-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验