Albert-Ludwigs-Universität Freiburg, Institut für Anorganische und Analytische Chemie, Albertstr. 21, 79104 Freiburg, Germany.
Inorg Chem. 2020 Jul 20;59(14):9496-9510. doi: 10.1021/acs.inorgchem.9b03622. Epub 2020 Mar 3.
The PPh ligands in the heterodinuclear AuPt complex [(PhP)AuPt(PPh)][BAr] (BAr = tetrakis[3,5-bis(trifluoromethyl)phenyl]borate) exhibit a high fluxionality on the AuPt core. Fast intramolecular and slow intermolecular processes for the reversible exchange of the PPh ligands have been identified. When [(PhP)AuPt(PPh)][BAr] is heated in solution, the formation of benzene is observed, and a trinuclear, cationic AuPt complex is generated. This process is preceded by reversible phenyl-group exchange between the PPh ligands present in the reaction mixture as elucidated by deuterium-labeling studies. Both the elimination of benzene and the preceding reversible phenyl-group exchange have originally been observed in mass-spectrometry-based CID experiments (CID = Collision-Induced Dissociation). While CID of mass-selected [Au,Pt,(PPh)] results exclusively in the loss of PPh, the resulting cation [Au,Pt,(PPh)] selectively eliminates CH. Thus, the dissociation of a PPh ligand from [Au,Pt,(PPh)] is energetically not able to compete with processes which result in C-H- and C-P-bond cleavage. In both media, the heterobimetallic nature of the employed complexes is the key for the observed reactivity. Only the intimate interplay of the gas-phase investigations, studies in solution, and thorough DFT computations allowed for the elucidation of the mechanistic details of the reactivity of [(PhP)AuPt(PPh)][BAr].
[(PhP)AuPt(PPh)][BAr](BAr = 四[3,5-双(三氟甲基)苯基]硼酸酯)中杂双核 AuPt 配合物的 PPh 配体在 AuPt 核上表现出高度的流动性。已经确定了 PPh 配体可逆交换的快速分子内和缓慢分子间过程。当 [(PhP)AuPt(PPh)][BAr] 在溶液中加热时,观察到苯的形成,并生成了一种三核、阳离子 AuPt 配合物。通过氘标记研究阐明,该过程之前是反应混合物中存在的 PPh 配体之间的可逆苯基交换。苯的消除和之前的可逆苯基交换最初都是在基于质谱的 CID 实验中观察到的(CID = 碰撞诱导解离)。虽然 CID 对质量选择的 [Au,Pt,(PPh)] 仅导致 PPh 的损失,但生成的阳离子 [Au,Pt,(PPh)] 选择性消除 CH。因此,从 [Au,Pt,(PPh)] 中解离 PPh 配体在能量上不能与导致 C-H 和 C-P 键断裂的过程竞争。在这两种介质中,所使用的配合物的杂双金属性质是观察到的反应性的关键。只有气相研究、溶液研究和彻底的 DFT 计算的密切相互作用,才能阐明 [(PhP)AuPt(PPh)][BAr] 反应性的机制细节。