Sigmund Gabriel, Gharasoo Mehdi, Hüffer Thorsten, Hofmann Thilo
Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Althanstrasse 14, 1090 Wien, Austria.
Agroscope, Environmental Analytics, Reckenholzstrasse 191, CH-8046 Zurich, Switzerland.
Environ Sci Technol. 2020 Apr 7;54(7):4583-4591. doi: 10.1021/acs.est.9b06287. Epub 2020 Mar 27.
Most contaminants of emerging concern are polar and/or ionizable organic compounds, whose removal from engineered and environmental systems is difficult. Carbonaceous sorbents include activated carbon, biochar, fullerenes, and carbon nanotubes, with applications such as drinking water filtration, wastewater treatment, and contaminant remediation. Tools for predicting sorption of many emerging contaminants to these sorbents are lacking because existing models were developed for neutral compounds. A method to select the appropriate sorbent for a given contaminant based on the ability to predict sorption is required by researchers and practitioners alike. Here, we present a widely applicable deep learning neural network approach that excellently predicted the conventionally used Freundlich isotherm fitting parameters log and ( > 0.98 for log , and > 0.91 for ). The neural network models are based on parameters generally available for carbonaceous sorbents and/or parameters freely available from online databases. A freely accessible graphical user interface is provided.
大多数新出现的关注污染物是极性和/或可离子化的有机化合物,很难从工程系统和环境系统中去除。碳质吸附剂包括活性炭、生物炭、富勒烯和碳纳米管,应用于饮用水过滤、废水处理和污染物修复等领域。由于现有的模型是为中性化合物开发的,因此缺乏预测许多新出现的污染物在这些吸附剂上吸附情况的工具。研究人员和从业人员都需要一种基于吸附预测能力为给定污染物选择合适吸附剂的方法。在此,我们提出了一种广泛适用的深度学习神经网络方法,该方法出色地预测了传统使用的弗伦德利希等温线拟合参数log 和 (log 的 > 0.98, 的 > 0.91)。神经网络模型基于碳质吸附剂通常可用的参数和/或可从在线数据库免费获得的参数。提供了一个可免费访问的图形用户界面。