Suppr超能文献

流化催化裂化催化剂颗粒中的基质效应:对结构、酸度和可及性的影响

Matrix Effects in a Fluid Catalytic Cracking Catalyst Particle: Influence on Structure, Acidity, and Accessibility.

作者信息

Velthoen Marjolein E Z, Lucini Paioni Alessandra, Teune Iris E, Baldus Marc, Weckhuysen Bert M

机构信息

Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.

Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.

出版信息

Chemistry. 2020 Sep 16;26(52):11995-12009. doi: 10.1002/chem.201905867. Epub 2020 Aug 12.

Abstract

Matrix effects in a fluid catalytic cracking (FCC) catalyst have been studied in terms of structure, accessibility, and acidity. An extensive characterization study into the structural and acidic properties of a FCC catalyst, its individual components (i.e., zeolite H-Y, binder (boehmite/silica) and kaolin clay), and two model FCC catalyst samples containing only two components (i.e., zeolite-binder and binder-clay) was performed at relevant conditions. This allowed the drawing of conclusions about the role of each individual component, describing their mutual physicochemical interactions, establishing structure-acidity relationships, and determining matrix effects in FCC catalyst materials. This has been made possible by using a wide variety of characterization techniques, including temperature-programmed desorption of ammonia, infrared spectroscopy in combination with CO as probe molecule, transmission electron microscopy, X-ray diffraction, Ar physisorption, and advanced nuclear magnetic resonance. By doing so it was, for example, revealed that a freshly prepared spray-dried FCC catalyst appears as a physical mixture of its individual components, but under typical riser reactor conditions, the interaction between zeolite H-Y and binder material is significant and mobile aluminum migrates and inserts from the binder into the defects of the zeolite framework, thereby creating additional Brønsted acid sites and restoring the framework structure.

摘要

已从结构、可及性和酸度方面研究了流化催化裂化(FCC)催化剂中的基质效应。在相关条件下,对FCC催化剂、其各个组分(即沸石H-Y、粘结剂(勃姆石/二氧化硅)和高岭土)以及两个仅包含两种组分的FCC催化剂模型样品(即沸石-粘结剂和粘结剂-粘土)的结构和酸性性质进行了广泛的表征研究。这使得能够得出关于每个单独组分的作用的结论,描述它们之间的相互物理化学相互作用,建立结构-酸度关系,并确定FCC催化剂材料中的基质效应。通过使用多种表征技术,包括氨程序升温脱附、以CO作为探针分子的红外光谱、透射电子显微镜、X射线衍射、氩物理吸附和先进的核磁共振,这已成为可能。例如,通过这样做发现,新鲜制备的喷雾干燥FCC催化剂呈现为其各个组分的物理混合物,但在典型的提升管反应器条件下,沸石H-Y与粘结剂材料之间的相互作用很显著,可移动的铝从粘结剂迁移并插入到沸石骨架的缺陷中,从而产生额外的布朗斯台德酸位点并恢复骨架结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1129/7539955/451da6d8c869/CHEM-26-11995-g001.jpg

相似文献

1
Matrix Effects in a Fluid Catalytic Cracking Catalyst Particle: Influence on Structure, Acidity, and Accessibility.
Chemistry. 2020 Sep 16;26(52):11995-12009. doi: 10.1002/chem.201905867. Epub 2020 Aug 12.
2
Staining of fluid-catalytic-cracking catalysts: localising Brønsted acidity within a single catalyst particle.
Chemistry. 2012 Jan 23;18(4):1094-101. doi: 10.1002/chem.201102949. Epub 2011 Dec 9.
3
Single Particle Assays to Determine Heterogeneities within Fluid Catalytic Cracking Catalysts.
Chemistry. 2020 Jul 14;26(39):8546-8554. doi: 10.1002/chem.201905880. Epub 2020 May 29.
5
Dispersion and orientation of zeolite ZSM-5 crystallites within a fluid catalytic cracking catalyst particle.
Chemistry. 2014 Mar 24;20(13):3667-77. doi: 10.1002/chem.201303549. Epub 2014 Feb 24.
8
Nickel Poisoning of a Cracking Catalyst Unravelled by Single-Particle X-ray Fluorescence-Diffraction-Absorption Tomography.
Angew Chem Int Ed Engl. 2020 Mar 2;59(10):3922-3927. doi: 10.1002/anie.201914950. Epub 2020 Jan 23.
9
Probing the different life stages of a fluid catalytic cracking particle with integrated laser and electron microscopy.
Chemistry. 2013 Mar 18;19(12):3846-59. doi: 10.1002/chem.201203491. Epub 2013 Feb 27.
10
Nanoscale Chemical Imaging of a Single Catalyst Particle with Tip-Enhanced Fluorescence Microscopy.
ChemCatChem. 2019 Jan 9;11(1):417-423. doi: 10.1002/cctc.201801023. Epub 2018 Jul 31.

引用本文的文献

1
Transport limitations in polyolefin cracking at the single catalyst particle level.
Chem Sci. 2023 Aug 16;14(37):10068-10080. doi: 10.1039/d3sc03229a. eCollection 2023 Sep 27.
2
Shaping of Porous CeO Powders into Highly Active Catalyst Carriers.
ACS Appl Eng Mater. 2023 Mar 29;1(4):1106-1115. doi: 10.1021/acsaenm.2c00214. eCollection 2023 Apr 28.
3
Plastic Waste Conversion over a Refinery Waste Catalyst.
Angew Chem Int Ed Engl. 2021 Jul 12;60(29):16101-16108. doi: 10.1002/anie.202104110. Epub 2021 Jun 15.
4

本文引用的文献

1
Nickel Poisoning of a Cracking Catalyst Unravelled by Single-Particle X-ray Fluorescence-Diffraction-Absorption Tomography.
Angew Chem Int Ed Engl. 2020 Mar 2;59(10):3922-3927. doi: 10.1002/anie.201914950. Epub 2020 Jan 23.
3
Interrogating the Lewis Acidity of Metal Sites in Beta Zeolites with N Pyridine Adsorption Coupled with MAS NMR Spectroscopy.
J Phys Chem C Nanomater Interfaces. 2016 Dec 22;120(50):28533-28544. doi: 10.1021/acs.jpcc.6b07811. Epub 2016 Sep 21.
4
Visualizing Dealumination of a Single Zeolite Domain in a Real-Life Catalytic Cracking Particle.
Angew Chem Int Ed Engl. 2016 Sep 5;55(37):11134-8. doi: 10.1002/anie.201605215. Epub 2016 Jul 6.
5
Binder Effects in SiO- and AlO-Bound Zeolite ZSM-5-Based Extrudates as Studied by Microspectroscopy.
ChemCatChem. 2015 Apr 20;7(8):1312-1321. doi: 10.1002/cctc.201402897. Epub 2015 Jan 28.
7
Probing zeolites by vibrational spectroscopies.
Chem Soc Rev. 2015 Oct 21;44(20):7262-341. doi: 10.1039/c5cs00396b. Epub 2015 Oct 5.
8
Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis.
Chem Soc Rev. 2015 Oct 21;44(20):7342-70. doi: 10.1039/c5cs00376h. Epub 2015 Sep 18.
10
Selective staining of Brønsted acidity in zeolite ZSM-5-based catalyst extrudates using thiophene as a probe.
Phys Chem Chem Phys. 2014 Oct 21;16(39):21531-42. doi: 10.1039/c4cp03649b. Epub 2014 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验