Suppr超能文献

剖析线性运动蛋白功能的合成生物学方法:迈向人工自主蛋白行走器的设计与合成。

Synthetic biology approaches to dissecting linear motor protein function: towards the design and synthesis of artificial autonomous protein walkers.

作者信息

Linke Heiner, Höcker Birte, Furuta Ken'ya, Forde Nancy R, Curmi Paul M G

机构信息

NanoLund and Solid State Physics, Lund University, Box 118, SE 22100, Lund, Sweden.

Department of Biochemistry, University of Bayreuth, 95447, Bayreuth, Germany.

出版信息

Biophys Rev. 2020 Aug;12(4):1041-1054. doi: 10.1007/s12551-020-00717-1. Epub 2020 Jul 10.

Abstract

Molecular motors and machines are essential for all cellular processes that together enable life. Built from proteins with a wide range of properties, functionalities and performance characteristics, biological motors perform complex tasks and can transduce chemical energy into mechanical work more efficiently than human-made combustion engines. Sophisticated studies of biological protein motors have provided many structural and biophysical insights and enabled the development of models for motor function. However, from the study of highly evolved, biological motors, it remains difficult to discern detailed mechanisms, for example, about the relative role of different force generation mechanisms, or how information is communicated across a protein to achieve the necessary coordination. A promising, complementary approach to answering these questions is to build synthetic protein motors from the bottom up. Indeed, much effort has been invested in functional protein design, but so far, the "holy grail" of designing and building a functional synthetic protein motor has not been realized. Here, we review the progress made to date, and we put forward a roadmap for achieving the aim of constructing the first artificial, autonomously running protein motor. Specifically, we propose to break down the task into (i) enzymatic control of track binding, (ii) the engineering of asymmetry and (iii) the engineering of allosteric control for internal communication. We also propose specific approaches for solving each of these challenges.

摘要

分子马达和分子机器对于所有共同维持生命的细胞过程至关重要。生物马达由具有广泛性质、功能和性能特征的蛋白质构建而成,能执行复杂任务,且将化学能转化为机械功的效率高于人造内燃机。对生物蛋白质马达的深入研究提供了许多结构和生物物理方面的见解,并推动了马达功能模型的发展。然而,从对高度进化的生物马达的研究中,仍难以辨别详细机制,例如不同力产生机制的相对作用,或者信息如何在蛋白质中传递以实现必要的协调。一种有望回答这些问题的补充方法是自下而上构建合成蛋白质马达。确实,在功能性蛋白质设计方面已投入大量努力,但迄今为止,设计和构建功能性合成蛋白质马达这一“圣杯”尚未实现。在此,我们回顾了迄今为止取得的进展,并提出了实现构建首个自主运行的人工蛋白质马达这一目标的路线图。具体而言,我们建议将任务分解为:(i)对轨道结合的酶促控制;(ii)不对称性工程;(iii)用于内部通讯的变构控制工程。我们还提出了解决这些挑战的具体方法。

相似文献

2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
The Tumbleweed: towards a synthetic proteinmotor.
HFSP J. 2009 Jun;3(3):204-12. doi: 10.2976/1.3111282. Epub 2009 Apr 28.
4
Engineering with Biomolecular Motors.
Acc Chem Res. 2018 Dec 18;51(12):3015-3022. doi: 10.1021/acs.accounts.8b00296. Epub 2018 Oct 30.
5
Track-walking molecular motors: a new generation beyond bridge-burning designs.
Nanoscale. 2019 May 16;11(19):9240-9263. doi: 10.1039/c9nr00033j.
6
Intrinsically unidirectional chemically fuelled rotary molecular motors.
Nature. 2022 Sep;609(7926):293-298. doi: 10.1038/s41586-022-05033-0. Epub 2022 Jul 6.
7
DNA Gold Nanoparticle Motors Demonstrate Processive Motion with Bursts of Speed Up to 50 nm Per Second.
ACS Nano. 2021 May 25;15(5):8427-8438. doi: 10.1021/acsnano.0c10658. Epub 2021 May 6.
8
Molecular Pumps and Motors.
J Am Chem Soc. 2021 Apr 21;143(15):5569-5591. doi: 10.1021/jacs.0c13388. Epub 2021 Apr 8.
9
Highly Polyvalent DNA Motors Generate 100+ pN of Force via Autochemophoresis.
Nano Lett. 2019 Oct 9;19(10):6977-6986. doi: 10.1021/acs.nanolett.9b02311. Epub 2019 Sep 9.
10
Through the Eyes of Creators: Observing Artificial Molecular Motors.
ACS Nanosci Au. 2022 Jun 15;2(3):140-159. doi: 10.1021/acsnanoscienceau.1c00041. Epub 2022 Jan 13.

引用本文的文献

1
Machine learning-aided design and screening of an emergent protein function in synthetic cells.
Nat Commun. 2024 Mar 5;15(1):2010. doi: 10.1038/s41467-024-46203-0.
2
Motility of an autonomous protein-based artificial motor that operates via a burnt-bridge principle.
Nat Commun. 2024 Feb 23;15(1):1511. doi: 10.1038/s41467-024-45570-y.
3
Through the Eyes of Creators: Observing Artificial Molecular Motors.
ACS Nanosci Au. 2022 Jun 15;2(3):140-159. doi: 10.1021/acsnanoscienceau.1c00041. Epub 2022 Jan 13.
4
Self-Concern Across Scales: A Biologically Inspired Direction for Embodied Artificial Intelligence.
Front Neurorobot. 2022 Apr 25;16:857614. doi: 10.3389/fnbot.2022.857614. eCollection 2022.
5
Synergistic regulation of nonbinary molecular switches by protonation and light.
Proc Natl Acad Sci U S A. 2021 Nov 23;118(47). doi: 10.1073/pnas.2112973118.
6
Biophysical Reviews: 2020-looking back, going forward.
Biophys Rev. 2020 Dec 2;12(6):1269-1276. doi: 10.1007/s12551-020-00777-3. eCollection 2020 Dec.

本文引用的文献

1
Dynein Harnesses Active Fluctuations of Microtubules for Faster Movement.
Nat Phys. 2020;16:312-316. doi: 10.1038/s41567-019-0757-4. Epub 2020 Jan 20.
2
Modeling work-speed-accuracy trade-offs in a stochastic rotary machine.
Phys Rev E. 2020 Mar;101(3-1):032110. doi: 10.1103/PhysRevE.101.032110.
3
Computational design of closely related proteins that adopt two well-defined but structurally divergent folds.
Proc Natl Acad Sci U S A. 2020 Mar 31;117(13):7208-7215. doi: 10.1073/pnas.1914808117. Epub 2020 Mar 18.
4
Structural basis for two-way communication between dynein and microtubules.
Nat Commun. 2020 Feb 25;11(1):1038. doi: 10.1038/s41467-020-14842-8.
5
Structure of Microtubule-Trapped Human Kinesin-5 and Its Mechanism of Inhibition Revealed Using Cryoelectron Microscopy.
Structure. 2020 Apr 7;28(4):450-457.e5. doi: 10.1016/j.str.2020.01.013. Epub 2020 Feb 20.
6
Tunable DNA Origami Motors Translocate Ballistically Over μm Distances at nm/s Speeds.
Angew Chem Int Ed Engl. 2020 Jun 8;59(24):9514-9521. doi: 10.1002/anie.201916281. Epub 2020 Apr 1.
7
Introduction: Molecular Motors.
Chem Rev. 2020 Jan 8;120(1):1-4. doi: 10.1021/acs.chemrev.9b00819.
8
Structural basis for power stroke vs. Brownian ratchet mechanisms of motor proteins.
Proc Natl Acad Sci U S A. 2019 Oct 1;116(40):19777-19785. doi: 10.1073/pnas.1818589116. Epub 2019 Sep 10.
9
Theory of Nonequilibrium Free Energy Transduction by Molecular Machines.
Chem Rev. 2020 Jan 8;120(1):434-459. doi: 10.1021/acs.chemrev.9b00254. Epub 2019 Aug 14.
10
Symmetry, Rigidity, and Allosteric Signaling: From Monomeric Proteins to Molecular Machines.
Chem Rev. 2019 Jun 26;119(12):6788-6821. doi: 10.1021/acs.chemrev.8b00760. Epub 2019 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验