ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Australia; Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.
Clive and Vera Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Australia.
J Struct Biol. 2020 May 1;210(2):107488. doi: 10.1016/j.jsb.2020.107488. Epub 2020 Feb 29.
Cryo-transmission electron tomography (cryo-ET) in association with cryo-focused ion beam (cryo-FIB) milling enables structural biology studies to be performed directly within the cellular environment. Cryo-preserved cells are milled and a lamella with a typical thickness of 200-300 nm provides an electron transparent window suitable for cryo-ET imaging. Cryo-FIB milling is an effective method, but it is a tedious and time-consuming process, which typically results in ~10 lamellae per day. Here, we introduce an automated method to reproducibly prepare cryo-lamellae on a grid and reduce the amount of human supervision. We tested the routine on cryo-preserved Saccharomyces cerevisiae, mammalian 293 T cells, and lysozyme protein crystals. Here we demonstrate that our method allows an increased throughput, achieving a rate of 5 lamellae/hour without the need to supervise the FIB milling. We demonstrate that the quality of the lamellae is consistent throughout the preparation and their compatibility with cryo-ET analyses.
低温传输电子断层扫描(cryo-ET)与低温聚焦离子束(cryo-FIB)铣削相结合,使结构生物学研究能够直接在细胞环境中进行。低温保存的细胞被铣削,厚度为 200-300nm 的薄片提供了一个适合 cryo-ET 成像的电子透明窗口。低温 FIB 铣削是一种有效的方法,但它是一个繁琐且耗时的过程,通常每天只能得到约 10 个薄片。在这里,我们介绍了一种自动化的方法,可在网格上重复制备 cryo-薄片,并减少人为监督的数量。我们在低温保存的酿酒酵母、哺乳动物 293T 细胞和溶菌酶蛋白晶体上测试了该方法的常规操作。结果表明,我们的方法可以提高通量,达到每小时 5 个薄片的速度,而无需对 FIB 铣削进行监督。我们证明了制备过程中薄片的质量始终保持一致,并且它们与 cryo-ET 分析兼容。