Suppr超能文献

直接观察微生物双相生长过程中单细胞代谢活性的动态变化。

Direct Observation of the Dynamics of Single-Cell Metabolic Activity during Microbial Diauxic Growth.

机构信息

Department of Earth and Planetary Sciences, Washington University, St. Louis, Missouri, USA

Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel.

出版信息

mBio. 2020 Mar 3;11(2):e01519-19. doi: 10.1128/mBio.01519-19.

Abstract

Population-level analyses are rapidly becoming inadequate to answer many of biomedical science and microbial ecology's most pressing questions. The role of microbial populations within ecosystems and the evolutionary selective pressure on individuals depend fundamentally on the metabolic activity of single cells. Yet, many existing single-cell technologies provide only indirect evidence of metabolic specialization because they rely on correlations between transcription and phenotype established at the level of the population to infer activity. In this study, we take a top-down approach using isotope labels and secondary ion mass spectrometry to track the uptake of carbon and nitrogen atoms from different sources into biomass and directly observe dynamic changes in anabolic specialization at the level of single cells. We investigate the classic microbiological phenomenon of diauxic growth at the single-cell level in the model methylotroph In nature, this organism inhabits the phyllosphere, where it experiences diurnal changes in the available carbon substrates, necessitating an overhaul of central carbon metabolism. We show that the population exhibits a unimodal response to the changing availability of viable substrates, a conclusion that supports the canonical model but has thus far been supported by only indirect evidence. We anticipate that the ability to monitor the dynamics of anabolism in individual cells directly will have important applications across the fields of ecology, medicine, and biogeochemistry, especially where regulation downstream of transcription has the potential to manifest as heterogeneity that would be undetectable with other existing single-cell approaches. Understanding how genetic information is realized as the behavior of individual cells is a long-term goal of biology but represents a significant technological challenge. In clonal microbial populations, variation in gene regulation is often interpreted as metabolic heterogeneity. This follows the central dogma of biology, in which information flows from DNA to RNA to protein and ultimately manifests as activity. At present, DNA and RNA can be characterized in single cells, but the abundance and activity of proteins cannot. Inferences about metabolic activity usually therefore rely on the assumption that transcription reflects activity. By tracking the atoms from which they build their biomass, we make direct observations of growth rate and substrate specialization in individual cells throughout a period of growth in a changing environment. This approach allows the flow of information from DNA to be constrained from the distal end of the regulatory cascade and will become an essential tool in the rapidly advancing field of single-cell metabolism.

摘要

人群水平分析越来越不足以回答生物医学科学和微生物生态学的许多最紧迫的问题。微生物种群在生态系统中的作用以及个体的进化选择压力从根本上取决于单细胞的代谢活性。然而,许多现有的单细胞技术仅提供代谢特化的间接证据,因为它们依赖于在种群水平上建立的转录和表型之间的相关性,以推断活性。在这项研究中,我们采用自上而下的方法,使用同位素标记和二次离子质谱法跟踪来自不同来源的碳和氮原子进入生物量的吸收,并直接观察单细胞水平上合成代谢特化的动态变化。我们在模型甲基营养菌中研究了经典微生物学的双相生长现象。在自然界中,这种生物栖息在叶际,在那里它经历了可用碳底物的昼夜变化,需要对中心碳代谢进行全面检修。我们表明,种群对可生存底物的变化可用性表现出单峰响应,这一结论支持了经典模型,但迄今为止仅得到间接证据的支持。我们预计,直接监测单个细胞中合成代谢动态的能力将在生态学、医学和生物地球化学等领域具有重要应用,特别是在转录下游的调控有可能表现为其他现有单细胞方法无法检测到的异质性的情况下。了解遗传信息如何作为单个细胞的行为实现是生物学的长期目标,但代表了一个重大的技术挑战。在克隆微生物种群中,基因调控的变化通常被解释为代谢异质性。这遵循生物学的中心法则,其中信息从 DNA 流向 RNA 再流向蛋白质,最终表现为活性。目前,可以在单细胞中表征 DNA 和 RNA,但不能表征蛋白质的丰度和活性。因此,关于代谢活性的推断通常依赖于转录反映活性的假设。通过跟踪它们构建生物量的原子,我们在不断变化的环境中生长的整个过程中对单个细胞的生长速度和底物特化进行了直接观察。这种方法允许从 DNA 传递的信息从调控级联的远端受到约束,并且将成为单细胞代谢快速发展领域的重要工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0a2/7064762/5983cf6d5fd2/mBio.01519-19-f0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验