Suppr超能文献

运用漂移-扩散模型框架对西蒙任务的 BOLD 激活进行分解。

Decomposing Simon task BOLD activation using a drift-diffusion model framework.

机构信息

Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.

Data Science Institute, Columbia University, New York, NY, 10027, USA.

出版信息

Sci Rep. 2020 Mar 3;10(1):3938. doi: 10.1038/s41598-020-60943-1.

Abstract

The Simon effect is observed in spatial conflict tasks where the response time of subjects is increased if stimuli are presented in a lateralized manner so that they are incongruous with the response information that they represent symbolically. Previous studies have used fMRI to investigate this phenomenon, and while some have been driven by considerations of an underlying model, none have attempted to directly tie model and BOLD response together. It is likely that this is due to Simon models having been predominantly descriptive of the phenomenon rather than capturing the full spectrum of behavior at the level of individual subjects. Sequential sampling models (SSM) which capture full response distributions for correct and incorrect responses have recently been extended to capture conflict tasks. In this study we use our freely available framework for fitting and comparing non-standard SSMs to fit the Simon effect SSM (SE-SSM) to behavioral data. This model extension includes specific estimates of automatic response bias and a conflict counteraction parameter to individual subject behavioral data. We apply this approach in order to investigate whether our task specific model parameters have a correlate in BOLD response. Under the assumption that the SE-SSM reflects aspects of neural processing in this task, we go on to examine the BOLD correlates with the within trial expected decision-variable. We find that the SE-SSM captures the behavioral data and that our two conflict specific model parameters have clear across subject BOLD correlates, while other model parameters, as well as more standard behavioral measures do not. We also find that examining BOLD in terms of the expected decision-variable leads to a specific pattern of activation that would not be otherwise possible to extract.

摘要

西蒙效应在空间冲突任务中观察到,当刺激以偏侧化的方式呈现,与它们象征性表示的反应信息不一致时,被试的反应时间会增加。以前的研究使用 fMRI 来研究这种现象,虽然有些研究是基于潜在模型的考虑,但没有一项研究试图直接将模型和 BOLD 反应联系起来。这很可能是因为西蒙模型主要是对现象进行描述,而不是在个体被试的水平上捕捉到行为的全貌。最近,捕获正确和错误反应的完整反应分布的顺序采样模型 (SSM) 已被扩展用于捕获冲突任务。在这项研究中,我们使用我们免费提供的框架来拟合和比较非标准 SSM,以拟合行为数据的西蒙效应 SSM(SE-SSM)。这种模型扩展包括对自动反应偏差和个体被试行为数据的冲突抵消参数的特定估计。我们采用这种方法来研究我们特定于任务的模型参数是否与 BOLD 反应有关。假设 SE-SSM 反映了该任务中神经处理的某些方面,我们继续检查 BOLD 与试验内预期决策变量的相关性。我们发现 SE-SSM 能够捕捉行为数据,并且我们的两个冲突特定模型参数具有明确的跨被试 BOLD 相关性,而其他模型参数以及更标准的行为测量则没有。我们还发现,根据预期的决策变量检查 BOLD 会导致一种特定的激活模式,否则无法提取这种模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/461e/7054266/1099f9695424/41598_2020_60943_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验