Suppr超能文献

无阈值聚类增强:解决聚类推断中的平滑、阈值依赖性和定位问题。

Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference.

作者信息

Smith Stephen M, Nichols Thomas E

机构信息

FMRIB-Oxford University Centre for Functional MRI of the Brain, Department of Clinical Neurology, University of Oxford, Oxford, UK.

出版信息

Neuroimage. 2009 Jan 1;44(1):83-98. doi: 10.1016/j.neuroimage.2008.03.061. Epub 2008 Apr 11.

Abstract

Many image enhancement and thresholding techniques make use of spatial neighbourhood information to boost belief in extended areas of signal. The most common such approach in neuroimaging is cluster-based thresholding, which is often more sensitive than voxel-wise thresholding. However, a limitation is the need to define the initial cluster-forming threshold. This threshold is arbitrary, and yet its exact choice can have a large impact on the results, particularly at the lower (e.g., t, z < 4) cluster-forming thresholds frequently used. Furthermore, the amount of spatial pre-smoothing is also arbitrary (given that the expected signal extent is very rarely known in advance of the analysis). In the light of such problems, we propose a new method which attempts to keep the sensitivity benefits of cluster-based thresholding (and indeed the general concept of "clusters" of signal), while avoiding (or at least minimising) these problems. The method takes a raw statistic image and produces an output image in which the voxel-wise values represent the amount of cluster-like local spatial support. The method is thus referred to as "threshold-free cluster enhancement" (TFCE). We present the TFCE approach and discuss in detail ROC-based optimisation and comparisons with cluster-based and voxel-based thresholding. We find that TFCE gives generally better sensitivity than other methods over a wide range of test signal shapes and SNR values. We also show an example on a real imaging dataset, suggesting that TFCE does indeed provide not just improved sensitivity, but richer and more interpretable output than cluster-based thresholding.

摘要

许多图像增强和阈值处理技术利用空间邻域信息来增强对信号扩展区域的置信度。神经成像中最常见的此类方法是基于聚类的阈值处理,它通常比逐体素阈值处理更敏感。然而,一个局限性是需要定义初始聚类形成阈值。这个阈值是任意的,但其确切选择会对结果产生很大影响,特别是在经常使用的较低(例如,t、z < 4)聚类形成阈值时。此外,空间预平滑的量也是任意的(因为在分析之前很少能预先知道预期的信号范围)。鉴于这些问题,我们提出了一种新方法,该方法试图保留基于聚类的阈值处理的灵敏度优势(以及信号“聚类”的一般概念),同时避免(或至少最小化)这些问题。该方法采用原始统计图像并生成一个输出图像,其中逐体素值表示类聚类局部空间支持的量。因此,该方法被称为“无阈值聚类增强”(TFCE)。我们介绍了TFCE方法,并详细讨论了基于ROC的优化以及与基于聚类和基于体素的阈值处理的比较。我们发现,在广泛的测试信号形状和SNR值范围内,TFCE通常比其他方法具有更好的灵敏度。我们还展示了一个真实成像数据集的示例,表明TFCE不仅确实提供了更高的灵敏度,而且比基于聚类的阈值处理提供了更丰富、更易于解释的输出。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验