Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA.
Sci Adv. 2020 Feb 21;6(8):eaax5253. doi: 10.1126/sciadv.aax5253. eCollection 2020 Feb.
According to the cohesion-tension theory, mangrove trees desalinate salty water using highly negative pressure (or tension) that is generated by evaporative capillary forces in mangrove leaves. Here, we demonstrate a synthetic mangrove that mimics the main features of the natural mangrove: capillary pumping (leaves), stable water conduction in highly metastable states (stem), and membrane desalination (root). When using nanoporous membranes as leaves, the maximum osmotic pressures of saline feeds (10 to 30 bar) allowing pure water uptake precisely correspond to expected capillary pressures based on the Young-Laplace equation. Hydrogel-based leaves allow for stable operation and desalination of hypersaline solutions with osmotic pressures approaching 400 bar, fivefold greater than the pressure limits of conventional reverse osmosis. Our findings support the applicability of the cohesion-tension theory to desalination in mangroves, provide a new platform to study plant hydraulics, and create possibilities for engineered membrane separations using large, passively generated capillary pressures.
根据内聚-张力理论,红树林植物利用在红树林叶片中产生的高负压力(或张力)来淡化咸水。在这里,我们展示了一种合成的红树林,它模拟了天然红树林的主要特征:毛细泵送(叶片)、高度亚稳态下的稳定水传导(茎)和膜淡化(根)。当使用纳米多孔膜作为叶片时,允许纯水吸收的盐水进料的最大渗透压(10 至 30 巴)恰好对应于基于杨-拉普拉斯方程的预期毛细压力。基于水凝胶的叶片允许在渗透压接近 400 巴的高盐溶液中稳定运行和淡化,比传统反渗透的压力极限高五倍。我们的研究结果支持内聚-张力理论在红树林脱盐中的适用性,为研究植物水力学提供了新的平台,并为利用大的、被动产生的毛细压力进行工程膜分离创造了可能性。