Centro de Investigación en Alimentación y Desarrollo A.C, GE Astiazaran Rosas 46, 83304, Hermosillo, Sonora, Mexico.
Universidad de Sonora Unidad Regional Sur, Apartado Postal, 85380, Navojoa, Sonora, Mexico.
J Bioenerg Biomembr. 2020 Apr;52(2):61-70. doi: 10.1007/s10863-020-09827-7. Epub 2020 Mar 3.
Betaine aldehyde dehydrogenase (BADH) catalyzes the oxidation of betaine aldehyde to glycine betaine using NAD as a coenzyme. Studies in porcine kidney BADH (pkBADH) suggested that the enzyme exhibits heterogeneity of active sites and undergoes potassium-induced conformational changes. This study aimed to analyze if potassium concentration plays a role in the heterogeneity of pkBADH active sites through changes in NAD affinity constants, in its secondary structure content and stability. The enzyme was titrated with NAD 1 mM at fixed-variable KCl concentration, and the interaction measured by Isothermal Titration Calorimetry (ITC) and Circular Dichroism (CD). ITC data showed that K increased the first active site affinity in a manner dependent on its concentration; K values to the first site were 14.4, 13.1, and 10.4 μM, at 25, 50, and 75 mM KCl. ΔG values showed that the coenzyme binding is a spontaneous reaction without changes between active sites or depending on KCl concentration. ΔH and TΔS values showed that NAD binding to the active site is an endothermic process and is carried out at the expense of changes in entropy. α-Helix content increased as KCl increased, enzyme (T) values were 2.6 °C and 3.3 °C higher at 20 mM and 200 mM K. PkBADH molecular model showed three different interaction K sites. Results suggested K can interact with pkBADH and cause changes in the secondary structure, it provokes changes in the enzyme affinity by the coenzyme, and in the thermostability.
甜菜碱醛脱氢酶(BADH)利用 NAD 作为辅酶,催化甜菜碱醛氧化为甘氨酸甜菜碱。猪肾 BADH(pkBADH)的研究表明,该酶表现出活性部位的异质性,并经历钾诱导的构象变化。本研究旨在分析钾浓度是否通过改变 NAD 亲和力常数、二级结构含量和稳定性来影响 pkBADH 活性部位的异质性。在固定可变 KCl 浓度下,用 NAD 1mM 滴定酶,并通过等温滴定量热法(ITC)和圆二色性(CD)测量相互作用。ITC 数据表明,K 以依赖其浓度的方式增加了第一个活性部位的亲和力;在 25、50 和 75mM KCl 下,第一个位点的 K 值分别为 14.4、13.1 和 10.4μM。ΔG 值表明辅酶结合是一个自发反应,没有活性部位之间的变化或依赖于 KCl 浓度。ΔH 和 TΔS 值表明 NAD 与活性部位的结合是一个吸热过程,是在熵变化的代价下进行的。随着 KCl 的增加,α-螺旋含量增加,在 20mM 和 200mM K 时,酶(T)值分别升高了 2.6°C 和 3.3°C。pkBADH 分子模型显示了三个不同的相互作用 K 位点。结果表明,K 可以与 pkBADH 相互作用并引起二级结构的变化,它通过辅酶引起酶亲和力的变化,并影响热稳定性。