Suppr超能文献

金黄色葡萄球菌中甜菜碱醛脱氢酶的结构与功能分析

Structural and functional analysis of betaine aldehyde dehydrogenase from Staphylococcus aureus.

作者信息

Halavaty Andrei S, Rich Rebecca L, Chen Chao, Joo Jeong Chan, Minasov George, Dubrovska Ievgeniia, Winsor James R, Myszka David G, Duban Mark, Shuvalova Ludmilla, Yakunin Alexander F, Anderson Wayne F

机构信息

Department of Biochemistry and Molecular Genetics, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA.

Biosensor Tools LLC, Salt Lake City, UT 84103, USA.

出版信息

Acta Crystallogr D Biol Crystallogr. 2015 May;71(Pt 5):1159-75. doi: 10.1107/S1399004715004228. Epub 2015 Apr 25.

Abstract

When exposed to high osmolarity, methicillin-resistant Staphylococcus aureus (MRSA) restores its growth and establishes a new steady state by accumulating the osmoprotectant metabolite betaine. Effective osmoregulation has also been implicated in the acquirement of a profound antibiotic resistance by MRSA. Betaine can be obtained from the bacterial habitat or produced intracellularly from choline via the toxic betaine aldehyde (BA) employing the choline dehydrogenase and betaine aldehyde dehydrogenase (BADH) enzymes. Here, it is shown that the putative betaine aldehyde dehydrogenase SACOL2628 from the early MRSA isolate COL (SaBADH) utilizes betaine aldehyde as the primary substrate and nicotinamide adenine dinucleotide (NAD(+)) as the cofactor. Surface plasmon resonance experiments revealed that the affinity of NAD(+), NADH and BA for SaBADH is affected by temperature, pH and buffer composition. Five crystal structures of the wild type and three structures of the Gly234Ser mutant of SaBADH in the apo and holo forms provide details of the molecular mechanisms of activity and substrate specificity/inhibition of this enzyme.

摘要

当暴露于高渗透压环境时,耐甲氧西林金黄色葡萄球菌(MRSA)通过积累渗透保护代谢物甜菜碱来恢复其生长并建立新的稳态。有效的渗透调节也与MRSA获得深度抗生素耐药性有关。甜菜碱可以从细菌栖息地获取,或者通过使用胆碱脱氢酶和甜菜碱醛脱氢酶(BADH),由胆碱在细胞内生成有毒的甜菜碱醛(BA),进而产生甜菜碱。在此研究中表明,早期MRSA菌株COL的假定甜菜碱醛脱氢酶SACOL2628(SaBADH)以甜菜碱醛作为主要底物,烟酰胺腺嘌呤二核苷酸(NAD(+))作为辅因子。表面等离子体共振实验表明,NAD(+)、NADH和BA对SaBADH的亲和力受温度、pH值和缓冲液组成的影响。SaBADH野生型的五个晶体结构以及Gly234Ser突变体的三个脱辅基和全酶形式的结构,提供了该酶活性、底物特异性/抑制作用分子机制的详细信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0f5/4427200/86d845437b02/d-71-01159-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验