Suppr超能文献

带有胸段癌专家手动轮廓的CT图像,用于基准测试自动分割精度。

CT images with expert manual contours of thoracic cancer for benchmarking auto-segmentation accuracy.

作者信息

Yang Jinzhong, Veeraraghavan Harini, van Elmpt Wouter, Dekker Andre, Gooding Mark, Sharp Greg

机构信息

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Department of Medical Physics, Memorial Sloan Kettering Cancer Centre, New York, NY, USA.

出版信息

Med Phys. 2020 Jul;47(7):3250-3255. doi: 10.1002/mp.14107. Epub 2020 Mar 28.

Abstract

PURPOSE

Automatic segmentation offers many benefits for radiotherapy treatment planning; however, the lack of publicly available benchmark datasets limits the clinical use of automatic segmentation. In this work, we present a well-curated computed tomography (CT) dataset of high-quality manually drawn contours from patients with thoracic cancer that can be used to evaluate the accuracy of thoracic normal tissue auto-segmentation systems.

ACQUISITION AND VALIDATION METHODS

Computed tomography scans of 60 patients undergoing treatment simulation for thoracic radiotherapy were acquired from three institutions: MD Anderson Cancer Center, Memorial Sloan Kettering Cancer Center, and the MAASTRO clinic. Each institution provided CT scans from 20 patients, including mean intensity projection four-dimensional CT (4D CT), exhale phase (4D CT), or free-breathing CT scans depending on their clinical practice. All CT scans covered the entire thoracic region with a 50-cm field of view and slice spacing of 1, 2.5, or 3 mm. Manual contours of left/right lungs, esophagus, heart, and spinal cord were retrieved from the clinical treatment plans. These contours were checked for quality and edited if necessary to ensure adherence to RTOG 1106 contouring guidelines.

DATA FORMAT AND USAGE NOTES

The CT images and RTSTRUCT files are available in DICOM format. The regions of interest were named according to the nomenclature recommended by American Association of Physicists in Medicine Task Group 263 as Lung_L, Lung_R, Esophagus, Heart, and SpinalCord. This dataset is available on The Cancer Imaging Archive (funded by the National Cancer Institute) under Lung CT Segmentation Challenge 2017 (http://doi.org/10.7937/K9/TCIA.2017.3r3fvz08).

POTENTIAL APPLICATIONS

This dataset provides CT scans with well-delineated manually drawn contours from patients with thoracic cancer that can be used to evaluate auto-segmentation systems. Additional anatomies could be supplied in the future to enhance the existing library of contours.

摘要

目的

自动分割在放射治疗计划中具有诸多优势;然而,缺乏公开可用的基准数据集限制了自动分割在临床中的应用。在本研究中,我们展示了一个精心整理的计算机断层扫描(CT)数据集,该数据集包含来自胸段癌患者的高质量手动绘制轮廓,可用于评估胸段正常组织自动分割系统的准确性。

采集与验证方法

从三个机构获取了60例接受胸段放疗治疗模拟的患者的计算机断层扫描图像:MD安德森癌症中心、纪念斯隆凯特琳癌症中心和马斯特罗诊所。每个机构提供了20例患者的CT扫描图像,根据其临床实践,包括平均强度投影四维CT(4D CT)、呼气期(4D CT)或自由呼吸CT扫描。所有CT扫描图像的视野为50 cm,覆盖整个胸段区域,层厚为1、2.5或3 mm。从临床治疗计划中获取左/右肺、食管、心脏和脊髓的手动轮廓。对这些轮廓进行质量检查,并在必要时进行编辑,以确保符合RTOG 1106轮廓勾画指南。

数据格式和使用说明

CT图像和RTSTRUCT文件以DICOM格式提供。感兴趣区域根据美国医学物理学家协会任务组263推荐的命名法命名为Lung_L、Lung_R、Esophagus、Heart和SpinalCord。该数据集可在癌症影像存档库(由美国国立癌症研究所资助)的2017年肺CT分割挑战赛(http://doi.org/10.7937/K9/TCIA.2017.3r3fvz08)下获取。

潜在应用

该数据集提供了来自胸段癌患者的具有清晰手动绘制轮廓的CT扫描图像,可用于评估自动分割系统。未来可以提供更多的解剖结构,以扩充现有的轮廓库。

相似文献

引用本文的文献

4
Multicenter comparison of measures for quantitative evaluation of contouring in radiotherapy.放射治疗中轮廓定量评估测量方法的多中心比较
Phys Imaging Radiat Oncol. 2022 Nov 15;24:152-158. doi: 10.1016/j.phro.2022.11.009. eCollection 2022 Oct.
5
Auto-segmentation for total marrow irradiation.全骨髓照射的自动分割
Front Oncol. 2022 Aug 30;12:970425. doi: 10.3389/fonc.2022.970425. eCollection 2022.

本文引用的文献

2
Advances in Auto-Segmentation.自动分割技术的进展
Semin Radiat Oncol. 2019 Jul;29(3):185-197. doi: 10.1016/j.semradonc.2019.02.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验