Suppr超能文献

基于非环、大环和主体互锁的过渡金属二吡啶苯配合物的荧光阴离子传感。

Luminescent Anion Sensing by Transition-Metal Dipyridylbenzene Complexes Incorporated into Acyclic, Macrocyclic and Interlocked Hosts.

机构信息

Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.

出版信息

Chemistry. 2020 Apr 21;26(23):5288-5296. doi: 10.1002/chem.202000661. Epub 2020 Apr 1.

Abstract

A series of novel acyclic, macrocyclic and mechanically interlocked luminescent anion sensors have been prepared by incorporation of the isophthalamide motif into dipyridylbenzene to obtain cyclometallated complexes of platinum(II) and ruthenium(II). Both the acyclic and macrocyclic derivatives 7⋅Pt, 7⋅Ru⋅PF , 10⋅Pt and 10⋅Ru⋅PF are effective sensors for a range of halides and oxoanions. The near-infra red emitting ruthenium congeners exhibited an increased binding strength compared to platinum due to the cationic charge and thus additional electrostatic interactions. Intramolecular hydrogen-bonding between the dipyridylbenzene ligand and the amide carbonyls increases the preorganisation of both acyclic and macrocyclic metal derivatives resulting in no discernible macrocyclic effect. Interlocked analogues were also prepared, and preliminary luminescent chloride anion spectrometric titrations with 12⋅Ru⋅(PF ) demonstrate a marked increase in halide binding affinity due to the complementary chloride binding pocket of the [2]rotaxane. H NMR binding titrations indicate the interlocked dicationic receptor is capable of chloride recognition even in competitive 30 % aqueous mixtures.

摘要

已经通过将异苯二甲酰亚胺基元引入二吡啶苯来制备一系列新型无环、大环和机械互锁的发光阴离子传感器,以获得铂(II)和钌(II)的环金属化配合物。无环和大环衍生物 7⋅Pt、7⋅Ru⋅PF 、10⋅Pt 和 10⋅Ru⋅PF 都是一系列卤化物和氧阴离子的有效传感器。与铂相比,近红外发射的钌同系物由于带正电荷和因此额外的静电相互作用,表现出更强的结合强度。二吡啶苯配体和酰胺羰基之间的分子内氢键增加了无环和大环金属衍生物的预组织,导致没有明显的大环效应。还制备了互锁类似物,并且用 12⋅Ru⋅(PF )进行的初步发光氯化物阴离子光谱滴定表明,由于[2]轮烷的互补氯化物结合口袋,卤化物结合亲和力显着增加。 1 H NMR 结合滴定表明,互锁二阳离子受体即使在具有竞争性的 30%水性混合物中也能够识别氯离子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad9b/7216984/bbd050904d55/CHEM-26-5288-g006.jpg

相似文献

2
Rotaxane and catenane host structures for sensing charged guest species.
Acc Chem Res. 2014 Jul 15;47(7):1935-49. doi: 10.1021/ar500012a. Epub 2014 Apr 7.
3
Iodide Recognition and Sensing in Water by a Halogen-Bonding Ruthenium(II)-Based Rotaxane.
Chemistry. 2016 Jan 4;22(1):185-92. doi: 10.1002/chem.201504018. Epub 2015 Dec 2.
4
Evidence for halogen bond covalency in acyclic and interlocked halogen-bonding receptor anion recognition.
J Am Chem Soc. 2015 Jan 14;137(1):499-507. doi: 10.1021/ja511648d. Epub 2014 Dec 22.
5
Interlocked host anion recognition by an indolocarbazole-containing [2]rotaxane.
J Am Chem Soc. 2009 Apr 8;131(13):4937-52. doi: 10.1021/ja809905x.
6
Expanding the scope of the anion templated synthesis of interlocked structures.
Acc Chem Res. 2013 Feb 19;46(2):571-86. doi: 10.1021/ar300264n. Epub 2012 Nov 28.
7
Calix[4]arene-based rotaxane host systems for anion recognition.
Chemistry. 2010 Jan 25;16(4):1256-64. doi: 10.1002/chem.200902659.
8
Optical sensing of anions by macrocyclic and interlocked hosts.
Org Biomol Chem. 2021 Jun 2;19(21):4652-4677. doi: 10.1039/d1ob00601k.
9
A Halogen Bonding [2]Rotaxane Shuttle for Chloride-Selective Optical Sensing.
Chemistry. 2024 May 28;30(30):e202400952. doi: 10.1002/chem.202400952. Epub 2024 Apr 24.
10
Anion recognition by halogen bonding and hydrogen bonding bis(triazole)-imidazolium [2]rotaxanes.
Dalton Trans. 2021 Sep 28;50(37):12800-12805. doi: 10.1039/d1dt02414k.

引用本文的文献

1
Bis-Squaramide-Based [2]Rotaxane Hosts for Anion Recognition.
Chemistry. 2024 Dec 10;30(69):e202402731. doi: 10.1002/chem.202402731. Epub 2024 Oct 29.
2
Luminescent Pt(II) Complexes Using Unsymmetrical Bis(2-pyridylimino)isoindolate Analogues.
Inorg Chem. 2024 May 6;63(18):8273-8285. doi: 10.1021/acs.inorgchem.4c00558. Epub 2024 Apr 24.
3
Polycationic Ru(II) Luminophores: Syntheses, Photophysics, and Application in Electrostatically Driven Sensitization of Lanthanide Luminescence.
Inorg Chem. 2023 Dec 4;62(48):19446-19456. doi: 10.1021/acs.inorgchem.3c02352. Epub 2023 Nov 20.
5
Squaramide-Based Heteroditopic [2]Rotaxanes for Sodium Halide Ion-Pair Recognition.
Chemistry. 2023 Sep 1;29(49):e202301446. doi: 10.1002/chem.202301446. Epub 2023 Jul 26.
6
Halogen-Bonding Strapped Porphyrin BODIPY Rotaxanes for Dual Optical and Electrochemical Anion Sensing.
Chemistry. 2021 Oct 19;27(58):14550-14559. doi: 10.1002/chem.202102493. Epub 2021 Sep 6.
7
Damming an electronic energy reservoir: ion-regulated electronic energy shuttling in a [2]rotaxane.
Chem Sci. 2021 Jun 4;12(26):9196-9200. doi: 10.1039/d1sc02225c. eCollection 2021 Jul 7.
8
Supramolecular Fluorescent Sensors: An Historical Overview and Update.
Coord Chem Rev. 2021 Jan 15;427. doi: 10.1016/j.ccr.2020.213560. Epub 2020 Sep 15.
9
Nanohoop Rotaxane Design to Enhance the Selectivity of Reaction-Based Probes: A Proof-of-Principle Study.
Org Lett. 2021 Jun 18;23(12):4608-4612. doi: 10.1021/acs.orglett.1c01348. Epub 2021 Jun 1.
10
A Metal-Based Receptor for Selective Coordination and Fluorescent Sensing of Chloride.
Molecules. 2021 Apr 18;26(8):2352. doi: 10.3390/molecules26082352.

本文引用的文献

2
Tuning the Fluorescence Through Reorientation of the Axle in Calix[6]arene-Based Pseudorotaxanes.
Chemistry. 2020 Mar 9;26(14):3022-3025. doi: 10.1002/chem.201905500. Epub 2020 Feb 18.
3
Construction of Type III-C Rotaxane-Branched Dendrimers and Their Anion-Induced Dimension Modulation Feature.
J Am Chem Soc. 2019 Sep 4;141(35):13923-13930. doi: 10.1021/jacs.9b06739. Epub 2019 Aug 26.
4
Anion and pH dependent molecular motion by a halogen bonding [2]rotaxane.
Chem Commun (Camb). 2019 Aug 15;55(67):9975-9978. doi: 10.1039/c9cc04752b.
5
A Potent Halogen-Bonding Donor Motif for Anion Recognition and Anion Template Mechanical Bond Synthesis.
Angew Chem Int Ed Engl. 2019 Sep 23;58(39):13823-13827. doi: 10.1002/anie.201907625. Epub 2019 Aug 19.
6
Chemical On/Off Switching of Mechanically Planar Chirality and Chiral Anion Recognition in a [2]Rotaxane Molecular Shuttle.
J Am Chem Soc. 2019 Jun 12;141(23):9129-9133. doi: 10.1021/jacs.9b00941. Epub 2019 May 30.
7
Rotaxane Probes for the Detection of Hydrogen Peroxide by Xe HyperCEST NMR Spectroscopy.
Angew Chem Int Ed Engl. 2019 Jul 15;58(29):9948-9953. doi: 10.1002/anie.201903045. Epub 2019 Jun 11.
8
Nanohoop Rotaxanes from Active Metal Template Syntheses and Their Potential in Sensing Applications.
Angew Chem Int Ed Engl. 2019 May 27;58(22):7341-7345. doi: 10.1002/anie.201901984. Epub 2019 Apr 17.
9
Anion Recognition in Water by Charge-Neutral Halogen and Chalcogen Bonding Foldamer Receptors.
J Am Chem Soc. 2019 Mar 6;141(9):4119-4129. doi: 10.1021/jacs.9b00148. Epub 2019 Feb 19.
10
Iodide Discrimination by Tetra-Iodotriazole Halogen Bonding Interlocked Hosts.
Chemistry. 2019 Feb 26;25(12):3125-3130. doi: 10.1002/chem.201806093. Epub 2019 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验