Payce Ellie N, Knighton Richard C, Platts James A, Horton Peter N, Coles Simon J, Pope Simon J A
School of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, U.K.
School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England, U.K.
Inorg Chem. 2024 May 6;63(18):8273-8285. doi: 10.1021/acs.inorgchem.4c00558. Epub 2024 Apr 24.
A series of ligands based upon a 1,3-diimino-isoindoline framework have been synthesized and investigated as pincer-type (NNN) chelates for Pt(II). The synthetic route allows different combinations of heterocyclic moieties (including pyridyl, thiazole, and isoquinoline) to yield new unsymmetrical ligands. Pt()Cl complexes were obtained and characterized using a range of spectroscopic and analytical techniques: H and C NMR, IR, UV-vis and luminescence spectroscopies, elemental analyses, high-resolution mass spectrometry, electrochemistry, and one example via X-ray crystallography which showed a distorted square planar environment at Pt(II). Cyclic voltammetry on the complexes showed one irreversible oxidation between +0.75 and +1 V (attributed to Pt couple) and a number of ligand-based reductions; in four complexes, two fully reversible reductions were noted between -1.4 and -1.9 V. Photophysical studies showed that Pt()Cl absorbs efficiently in the visible region through a combination of ligand-based bands and metal-to-ligand charge-transfer features at 400-550 nm, with assignments supported by DFT calculations. Excitation at 500 nm led to luminescence (studied in both solutions and solid state) in all cases with different combinations of the heterocyclic donors providing tuning of the emission wavelength around 550-678 nm.
一系列基于1,3 - 二亚氨基异吲哚啉骨架的配体已被合成,并作为Pt(II)的钳型(NNN)螯合物进行了研究。该合成路线允许杂环部分(包括吡啶基、噻唑和异喹啉)进行不同组合,以产生新的不对称配体。通过一系列光谱和分析技术获得并表征了Pt(II)Cl配合物:氢谱和碳谱核磁共振、红外光谱、紫外可见光谱和发光光谱、元素分析、高分辨率质谱、电化学,以及通过X射线晶体学得到的一个例子,该例子显示Pt(II)处为扭曲的平面正方形环境。配合物的循环伏安法显示在+0.75至+1 V之间有一个不可逆氧化(归因于Pt电对)以及一些基于配体的还原;在四个配合物中,在 -1.4至 -1.9 V之间观察到两个完全可逆的还原。光物理研究表明,Pt(II)Cl通过配体基谱带和400 - 550 nm处的金属到配体电荷转移特征的组合,在可见光区域有效吸收,密度泛函理论计算支持了这些归属。在所有情况下,500 nm处的激发均导致发光(在溶液和固态中均进行了研究),不同组合的杂环供体可在550 - 678 nm左右调节发射波长。