Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
Cell Rep. 2020 Mar 3;30(9):3020-3035.e3. doi: 10.1016/j.celrep.2020.02.009.
The functional impact of single interneurons on neuronal output in vivo and how interneurons are recruited by physiological activity patterns remain poorly understood. In the cerebellar cortex, molecular layer interneurons and their targets, Purkinje cells, receive excitatory inputs from granule cells and climbing fibers. Using dual patch-clamp recordings from interneurons and Purkinje cells in vivo, we probe the spatiotemporal interactions between these circuit elements. We show that single interneuron spikes can potently inhibit Purkinje cell output, depending on interneuron location. Climbing fiber input activates many interneurons via glutamate spillover but results in inhibition of those interneurons that inhibit the same Purkinje cell receiving the climbing fiber input, forming a disinhibitory motif. These interneuron circuits are engaged during sensory processing, creating diverse pathway-specific response functions. These findings demonstrate how the powerful effect of single interneurons on Purkinje cell output can be sculpted by various interneuron circuit motifs to diversify cerebellar computations.
单个神经元在体内对神经元输出的功能影响,以及神经元如何被生理活动模式招募,这些仍然知之甚少。在小脑皮层中,分子层中间神经元及其靶标浦肯野细胞,接收来自颗粒细胞和 climbing fibers 的兴奋性输入。通过在体内对中间神经元和浦肯野细胞进行双膜片钳记录,我们探究了这些电路元件之间的时空相互作用。我们表明,单个中间神经元的尖峰可以根据中间神经元的位置强烈抑制浦肯野细胞的输出。climbing fiber 的输入通过谷氨酸溢出激活许多中间神经元,但导致抑制接收 climbing fiber 输入的同一浦肯野细胞的中间神经元,形成一个去抑制的模式。这些中间神经元回路在感觉处理过程中被激活,产生多样化的通路特异性反应功能。这些发现表明,单个中间神经元对浦肯野细胞输出的强大影响,如何通过各种中间神经元回路模式进行塑造,从而使小脑计算多样化。