Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA.
Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA.
Cell Rep. 2020 Mar 3;30(9):3051-3066.e7. doi: 10.1016/j.celrep.2020.02.030.
The striatum is a critical forebrain structure integrating cognitive, sensory, and motor information from diverse brain regions into meaningful behavioral output. However, the transcriptional mechanisms underlying striatal development at single-cell resolution remain unknown. Using single-cell RNA sequencing (RNA-seq), we examine the cellular diversity of the early postnatal striatum and show that Foxp1, a transcription factor strongly linked to autism and intellectual disability, regulates the cellular composition, neurochemical architecture, and connectivity of the striatum in a cell-type-dependent fashion. We also identify Foxp1-regulated target genes within distinct cell types and connect these molecular changes to functional and behavioral deficits relevant to phenotypes described in patients with FOXP1 loss-of-function mutations. Using this approach, we could also examine the non-cell-autonomous effects produced by disrupting one cell type and the molecular compensation that occurs in other populations. These data reveal the cell-type-specific transcriptional mechanisms regulated by Foxp1 that underlie distinct features of striatal circuitry.
纹状体是大脑前脑的关键结构,它将来自不同脑区的认知、感觉和运动信息整合为有意义的行为输出。然而,纹状体发育的转录机制在单细胞分辨率下仍然未知。使用单细胞 RNA 测序 (RNA-seq),我们检查了早期出生后纹状体的细胞多样性,并表明 Foxp1,一种与自闭症和智力残疾密切相关的转录因子,以依赖于细胞类型的方式调节纹状体的细胞组成、神经化学结构和连接。我们还在不同的细胞类型中识别出 Foxp1 调节的靶基因,并将这些分子变化与与 FOXP1 功能丧失突变患者描述的表型相关的功能和行为缺陷联系起来。通过这种方法,我们还可以检查破坏一种细胞类型产生的非细胞自主效应,以及其他群体中发生的分子补偿。这些数据揭示了 Foxp1 调节的细胞类型特异性转录机制,这些机制是纹状体回路的不同特征的基础。