Suppr超能文献

用于缺失数据分析的回归多重填补

Regression multiple imputation for missing data analysis.

作者信息

Yu Lili, Liu Liang, Peace Karl E

机构信息

Department of Biostatistics, Jiann-Ping Hsu College of Public Health, Georgia Southern University, GA, USA.

Department of Statistics, University of Georgia, Athens, GA, USA.

出版信息

Stat Methods Med Res. 2020 Sep;29(9):2647-2664. doi: 10.1177/0962280220908613. Epub 2020 Mar 4.

Abstract

Iterative multiple imputation is a popular technique for missing data analysis. It updates the parameter estimators iteratively using multiple imputation method. This technique is convenient and flexible. However, the parameter estimators do not converge point-wise and are not efficient for finite imputation size . In this paper, we propose a regression multiple imputation method. It uses the parameter estimators obtained from multiple imputation method to estimate the parameter estimators based on expectation maximization algorithm. We show that the resulting estimators are asymptotically efficient and converge point-wise for small values, when the iteration of the iterative multiple imputation goes to infinity. We evaluate the performance of the new proposed methods through simulation studies. A real data analysis is also conducted to illustrate the new method.

摘要

迭代多重填补是一种用于缺失数据分析的常用技术。它使用多重填补方法迭代地更新参数估计量。该技术方便且灵活。然而,参数估计量在逐点意义上并不收敛,并且对于有限的填补规模而言效率不高。在本文中,我们提出了一种回归多重填补方法。它使用从多重填补方法获得的参数估计量,基于期望最大化算法来估计参数估计量。我们表明,当迭代多重填补的迭代次数趋于无穷大时,对于较小的值,所得估计量是渐近有效的且逐点收敛。我们通过模拟研究评估新提出方法 的性能。还进行了一次实际数据分析以说明该新方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验