Nguyen Hong T T, Hoi Bui D, Vu Tuan V, Nham Phan V, Binh Nguyen T T
Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
Phys Chem Chem Phys. 2020 Mar 21;22(11):6318-6325. doi: 10.1039/c9cp06606c. Epub 2020 Mar 5.
The unique physical and chemical properties of β-borophene stem from the coexistence of the Dirac and triplet fermions. The metallic phase of β-borophene transitions to the semiconducting one when it is subjected to a perpendicular electric field or bias voltage. In this work, with the aid of a five-band tight-binding Hamiltonian, the Green's function approach and the Kubo-Greenwood formalism, the electronic thermal conductivity (ETC) of the semiconducting phase of β-borophene is studied. Two homogeneous (H) and inversion symmetric (IS) models are considered depending on the interaction of the substrate and boron atoms. In addition, due to the anisotropic structure of β-borophene, the swapping effect of bias poles is addressed. First of all, we find the pristine ETC < ETC independent of the temperature. Furthermore, a decrease of 74.45% (80.62%) is observed for ETC (ETC) when strong positive bias voltages are applied, while this is 25.2% (47.48%) when applying strong negative bias voltages. Moreover, the shoulder temperature of both models increases (fluctuates) with the positive (negative) bias voltage. Our numerical results pave the way for setting up future experimental thermoelectric devices in order to achieve the highest performance.
β-硼烯独特的物理和化学性质源于狄拉克费米子和三重态费米子的共存。当β-硼烯受到垂直电场或偏置电压作用时,其金属相转变为半导体相。在这项工作中,借助五能带紧束缚哈密顿量、格林函数方法和久保-格林伍德形式理论,研究了β-硼烯半导体相的电子热导率(ETC)。根据衬底与硼原子的相互作用,考虑了两种均匀(H)和反演对称(IS)模型。此外,由于β-硼烯的各向异性结构,还探讨了偏置极的交换效应。首先,我们发现原始电子热导率<ETC与温度无关。此外,当施加强正偏置电压时,ETC(ETC)下降了74.45%(80.62%),而施加强负偏置电压时,下降了25.2%(47.48%)。此外,两种模型的肩部温度都随正(负)偏置电压升高(波动)。我们的数值结果为建立未来高性能的实验性热电器件铺平了道路。